Search for Charged Higgs in Top Decays using 2.2 fb⁻¹ of CDF data

Geumbong Yu

University of Rochester

On behalf of the CDF collaboration

Introduction

- Two Higgs Doublet Model beyond the Standard Model
 ☑ H⁰, h⁰, A⁰, H[±]
- Too small direct production cross section of charged Higgs☑ Order of fb level
- Search for charged Higgs in top decays
 - \square M(H⁺)<M(t)-M(b)
 - \blacksquare Focus on H⁺ → \square at low tan \square

Prog.Part.Nucl.Phys.50:63-152,2003

Phys. Rev. Lett. 96, 042003 (2006)

Introduction

- Two Higgs Doublet Model beyond the Standard Model
 ☑ H⁰, h⁰, A⁰, H[±]
- Too small direct production cross section of charged Higgs☑ Order of fb level
- Search for charged Higgs in top decays
 - \square M(H⁺)<M(t)-M(b)
 - \square Focus on $H^{+} \rightarrow cs$ at low tan β

Prog.Part.Nucl.Phys.50:63-152,2003

Phys. Rev. Lett. 96, 042003 (2006)

Charged Higgs in Top Decays

- Lepton+jets top pair events
 - ☑ Consists of lepton, missing Et, >=4 jets
 - ☑ 30% of total tt events
- Same final state from W⁺ and H⁺

$$W^+ \rightarrow ud/cs \rightarrow jj$$
 Vs. $H^+ \rightarrow cs \rightarrow jj$

Search for higher mass bump in the di-jet mass distribution

Charged Higgs in Top Decays

- Lepton+jets top pair events
 - ☑ Consists of lepton, missing Et, >=4 jets
 - ☑ 30% of total tt events
- Same final state from W⁺ and H⁺

$$W^+ \rightarrow ud / cs \rightarrow jj$$
 Vs. $H^+ \rightarrow cs \rightarrow jj$

Search for higher mass bump in the di-jet mass distribution

CDF @ Tevatron

- $\stackrel{-}{\blacksquare}$ pp collisions @ $\sqrt{s} = 1.96$ TeV
- Analyze 2.2 fb⁻¹ of CDF data
 ☑ Taken by Aug 2007
- Tevatron delivered 4.217 fb⁻¹, and CDF acquired 3.452 fb⁻¹ as of Jun 12th

- CDF: inner to outer
 - -Silicon Detector
 - -Central Outer Tracker
 - -Solenoid (1.4T)
 - -EM Calorimeter
 - -HAD Calorimeter
 - -Muon Chamber

CDF @ Tevatron

- $\stackrel{-}{\blacksquare}$ pp collisions @ $\sqrt{s} = 1.96$ TeV
- Analyze 2.2 fb⁻¹ of CDF data
 ☑ Taken by Aug 2007
- Tevatron delivered 4.217 fb⁻¹, and CDF acquired 3.452 fb⁻¹ as of Jun 12th

- CDF: inner to outer
 - -Silicon Detector
 - -Central Outer Tracker
 - -Solenoid (1.4T)
 - -EM Calorimeter
 - -HAD Calorimeter
 - -Muon Chamber

Event Selection

Event Selection

Event Selection

Top Event Reconstruction

- Matching final state objects to the partons in kinematic χ^2 fitter:
 - ☑ Leading 4 jets
 - ☑ Lepton
 - ☑ Un-clustered energy for missing Et calculation
- Constrain top and leptonic W mass
- \blacksquare Vary energies within 1σ in the fitter

$$\chi^{2} = \sum_{i=l,4 \text{ jets}} \frac{(p_{T}^{i,\text{fit}} - p_{T}^{i,\text{meas}})^{2}}{\sigma_{i}^{2}} + \sum_{j=x,y} \frac{(p_{T}^{UE,\text{fit}} - p_{T}^{UE,\text{meas}})^{2}}{\sigma_{j}^{2}} + \frac{(m_{jj} - m_{jj}^{reco})^{2}}{\Gamma_{W}^{2}} + \frac{(m_{lv} - m_{W})^{2}}{\Gamma_{V}^{2}} + \frac{(m_{bjj} - m_{t})^{2}}{\Gamma_{t}^{2}} + \frac{(m_{blv} - m_{t})^{2}}{\Gamma_{t}^{2}}$$

Top Event Reconstruction

- Matching final state objects to the partons in kinematic χ^2 fitter:
 - ☑ Leading 4 jets
 - ☑ Lepton
 - ☑ Un-clustered energy for missing Et calculation
- Constrain top and leptonic W mass
- Vary energies within 1σ in the fitter

$$\chi^{2} = \sum_{i=l,4 \, jets} \frac{(p_{T}^{i,fit} - p_{T}^{i,meas})^{2}}{\sigma_{i}^{2}} + \sum_{j=x,y} \frac{(p_{T}^{UE,fit} - p_{T}^{UE,meas})^{2}}{\sigma_{j}^{2}} + \frac{(m_{jj} - m_{jj}^{reco})^{2}}{\Gamma_{W}^{2}} + \frac{(m_{lv} - m_{W})^{2}}{\Gamma_{t}^{2}} + \frac{(m_{bjj} - m_{t})^{2}}{\Gamma_{t}^{2}} + \frac{(m_{blv} - m_{t})^{2}}{\Gamma_{t}^{2}} + \frac{(m_{blv} - m_{t})^{2}}{\Gamma_{t}^{2}}$$

$$M_{W} = 80 \text{GeV}$$

$$M_{t} = 175 \text{GeV}$$

Top Event Reconstruction

■ Matching final state objects to the partons in kinematic χ^2 fitter:

- ☑ Leading 4 jets
- ☑ Lepton
- ✓ Un-clustered energy for missing Et calculation
- Constrain top and leptonic W mass
- Vary energies within 1σ in the fitter

13

Analysis Method

Di-jet Mass vs. Number of Jets

- Worse Higgs di-jet mass resolution with additional jets in tt
- Energy loss by final state radiation from the Higgs particle

Improvement on Di-jet Mass

- Add 5th jet to the closest leading jet if ΔR<1.0</p>
 - ☑ Jet cone size : 0.4
 - \square 5th jet = the most energetic extra jet
- The overall mean mass
- 100 GeV<M(H+)<140 GeV
 - ☑ Entries increased by 7.4%
- Not affect on W⁺ and non-tt bkgd

Reconstruct di-jet mass after adding nearby 5th jet

$$LH = \prod \frac{\nu_i^{n_i} \times e^{-\nu_i}}{n_i!} \bigotimes G(N_{bkg}, \sigma_{bkg})$$

- The binned likelihood function is constructed using:
 - ✓ Poisson probability
 - Gaussian constraints on number of non-tt background
- Di-jet mass distribution is fitted with the template :
 - ☑ H+,W+, and non-t̄t shape
- Likelihood fitter returns
 - \square Br(t \rightarrow H+b) where br(H+ \rightarrow cs)=100%
 - ☑ Total number of tt
 - ✓ Number of non-t̄t background
- We study Higgs mass values at
 - ☑ 90 GeV, 100 GeV, ..., 150 GeV

Systematic Uncertainties

The systematic uncertainties are symmetrized and are put into as a Gaussian input for smearing the likelihood value in each $br(t \rightarrow H + b)$

Upper Limit on Br(t→H+b)

- Upper limit on the br(t→H+b) is calculated by
 - ☑ Integration of the likelihood function up to 95% of positive (physical) branching ratio area
 - ✓ Projection onto x-axis is the upper limit on the branching ratio at 95% C.L.

Likelihood Function Example

Expected Limit on Br(t->H+b)

Di-jet Mass in 2.2 fb⁻¹ Top Decays

Upper Limit Br(t→H+b) @ 95% C.L.

Conclusion

- Search for the charged Higgs in lepton+jets top decays
 - ☑Look for an anomalous mass bump in di-jet mass distribution in hadronic side top decays
 - ☑Di-jet mass resolution is improved by adding up near by extra jet to the closest leading jet
- ■Looking at the 2.2fb⁻¹ of CDF data
 - ☑No significant excess in the di-jet mass distribution
 - ☑Set the upper limit on br(t→H+b), 0.32 to 0.1, for Higgs mass, 90 GeV 150 GeV.

BACKUP SLIDES

Assume 120 GeV H⁺ events in top decays

- The top events including H⁺ (dashed) vs. top (yellow) events without H⁺
- The charged Higgs entries corresponds to upper limit on br(t→H+b) = 0.1 @ 95% C.L.

How the 5th jet is distributed

■The 5th jet intt events from Higgs particle (FSR) or incoming quarks (ISR)

$$\Delta R(jet_1, jet_2) = \sqrt{(\eta_{jet1} - \eta_{jet2})^2 + (\phi_{jet1} - \phi_{jet2})^2}$$

5th jet added to Higgs jet

 Δ R(5th jet,h-jet) in X-axis Δ R(5th jet,b-jet) in Y-axis

78% is a real FSR Higgs jet.

Geumbong Yu

5th jet added to b-jet

Non-ttbar background composition

CDF Run II Pr	eliminary (2.2 fb^{-1})
≥ 4 tight jets	fraction(%)
0.7 ± 0.1	0.4
1.0 ± 0.1	0.5
0.8 ± 0.1	0.5
0.5 ± 0.1	0.3
5.6 ± 2.3	3.4
1.9 ± 0.8	1.1
1.9 ± 0.6	1.1
1.6 ± 3.3	0.9
13.9 ± 7.5	8.4
152.6 ± 25.0	91.6
166.5 ± 32.4	100
200	
	\geq 4 tight jets 0.7 ± 0.1 1.0 ± 0.1 0.8 ± 0.1 0.5 ± 0.1 5.6 ± 2.3 1.9 ± 0.8 1.9 ± 0.6 1.6 ± 3.3 13.9 ± 7.5 152.6 ± 25.0 166.5 ± 32.4

MSSM exclusion

R. Eusebi et al., The CDF Collaboration, Phys. Rev. Lett. 96, 042003 (2006)

This is the typical benchmark scenario developed for the search of h0 at LEP (hep-ph/9912223). The value of At is computed as a function of $tan(\beta)$, allowing for the maximum mass of the h0 for each value of $tan(\beta)$.

Branching ratio for other Higgs mass

$$\tan \beta = \frac{v_2}{v_1}, v_1^2 + v_2^2 = \frac{2m_w}{g}$$

Systematic Uncertainties in detail

- Selection of MC generator (Pythia vs. Herwig)
- Initial State Radiation
- Final State Radiation
- Q² scale difference for W+jets background generation
- B-tagging Efficiencies

0.01

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

 $Br(t \rightarrow H^*b)$ with all $H^* \rightarrow c\overline{s}$

0.01

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

 $Br(t \rightarrow H^*b)$ with all $H^* \rightarrow c\overline{s}$

Geum

Likelihood Integrity

