Searches for Squark and Gluino Production at the Tevatron

SUSY08 June 2008

Song Ming Wang Academia Sinica

On behalf of the CDF and DØ Collaborations

Outline

- •Tevatron and the collider experiments
- •SUSY searches at the Tevatron
- •Results from squark and gluino searches in
 - •Inclusive Missing Transverse Energy (MET) + jets signature
 - •MET + jets + tau
 - •Model independent MET + di-jet signature
- •Summary

The Tevatron Experiments

Multipurpose detectors :

- •Electron, muon, tau identification
- •Jet and missing energy measurement
- •Heavy-flavor tagging through displaced vertices and soft leptons

SUSY at the Tevatron

Searches for Squarks and Gluinos

- •Cover on inclusive searches for squarks and gluinos pair production
- •Searches for Stop and Sbottom will be covered by Philippe Calfayan
- •In these searches, we assume R-parity is conserved
 - \Rightarrow Lightest SUSY particle (LSP) is stable
 - \Rightarrow SUSY particles are pair produced
- •LSP is neutral and interacts weakly
 - \Rightarrow escapes detection
 - \Rightarrow missing energy signature

Backgrounds in MET+jets Signature

Real MET

W(→lv) + jets
Z(→vv) + jets
tt-bar, single top
(t→Wb, W→lv)

 $W \rightarrow l\nu$ (escaping ν

MET from

Fake MET

•WW,WZ,ZZ

- •Mis-measurement of jets' energy
 - •energy resolution, particles entering non-instrumented region
 - •MET align with mis-measured jet's direction
 - •Can have large contribution from QCD multi-jet due to its large cross section

- •Non-collision background
 - •Beam halo
 - •Cosmic muon
 - •Noise/dead-channels in detector

Non-Collision MET Background

- <u>Cleaning up non-collision background</u>
- Lots of effort from CDF and DØ at the beginning of Run 2 to understand the non-collision background
 - Fix any instrumental issues, or remove runs/events if not fixed
 - Require events with good primary vertex (PV)
 - Sufficient tracks in jets originate from PV

Event Selection

- •CDF,DØ search in ~2 fb⁻¹ data sample
- •Separate searches in the MET +2 jets, +3 jets, and +4 jets final states
- •Remove non-collision background
- •MET direction not align with jets (reduce QCD)
- •Lepton veto (reduce W/Z+jets, top, diboson)
- •Optimize cuts on leading jets' E_T , MET and H_T (scalar sum of jets' E_T)

	CDF			DØ		
Analysis	H _T	MET	Jet E _T	H _T	MET	Jet E _T
	(GeV)	(GeV)	(GeV)	(GeV)	(GeV)	(GeV)
2-jets	330	180	165,100	325	225	35,35
3-jets	330	120	140,100,25	375	175	35,35,35
4-jets	280	90	95,55,55,25	400	100	35,35,35,20

•Test background prediction in kinematic control regions :

QCD multijet Control Region

•Require at least one jet align with MET

W/Z+jets,top Control Region

•At least one electron candidate

Events in Signal Regions

•Determine limits in mSUGRA framework

- •Mass limit (taking into account theory uncertainties from PDF, renormalization and factorization scale)
 - $M(\tilde{g}) < 280 \text{ GeV} (CDF)$, $< 308 \text{ GeV} (D\emptyset)$, for all squark mass
 - $M(\tilde{q}) < 380 \text{ GeV} (CDF, DØ)$, for all gluino mass

Exclusion Limit in m0 vs m1/2 Plane

- •Results from both experiments also constrain the mSUGRA parameters (m0: univsersal scalar mass, m1/2: universal gaugino mass)
- •Extend limits beyond LEP

Squarks in MET+Jets+Tau Channel

- •Large mixing between L- and Rhanded superpartners of 3rd generation fermions
- •For stau ($\boldsymbol{\tilde{\tau}}$), large mixing may occur at high tan $\boldsymbol{\beta}$
 - \Rightarrow lightest stau ($\tilde{\tau}_1$) might be the lightest slepton
 - ⇒can be produced in cascade decays of squark pair production
 - stau decays directly: $\tilde{\tau}_1 \rightarrow \tau \tilde{\chi}_1^0$

•Final state signature : ≥ 2 jets + large MET + tau lepton

Squarks in MET+Jets+Tau Channel

- Selection cuts are similar to the inclusive MET+jets channel
- • \geq 1 hadronic tau (E_T > 15 GeV)
 - •Hadronic tau : narrow isolated jet with low track multiplicity

DØ Preliminary, 0.96 fb 24 Events / 30 • Data W → Iv + jets22 $Z \rightarrow vv + jets$ 20 ŴW WZ ZZ 18 $Z \rightarrow l^+ l^- + jets$ single-t 16 Signal $W \rightarrow lv + jets$ 14 12 10 8 ttbar 6 4 2 0<u>`</u> 100 200 300 400 500 600 700 800 900 **JJTHT (GeV)**

(before final JJTHT and MET cuts)

- •After all selection cuts:
 - •Nobs=2, Nexpt=1.7±0.2^{+0.6}-0.3
- Interpret results in mSUGRA model $(\tan\beta=15, A_0=-2m_0, \mu<0)$
- •Exclude mass m(squark)<366 GeV

Signature Based Search in the MET+dijet Channel

- •In many new physics models their predictions have MET +2 jets signature in the final state:
 - •SUSY, Leptoquarks, Universal Extra Dimensions ...
- •Perform a generic search in MET +2 jets signature w/o optimizing to a specific model

- •Uns : new unstable particle
- •Inv : new invisible particle

•Event Selection:

- •Similar pre-selection cuts as inclusive squark/gluino search
 - •But requires only 2 jets in final state
- •Choose two kinematic regions to have sensitivity to a wide range of new physics
 - •Low kinematic region : $H_T(E_{T(J1)} + E_{T(J2)}) > 125 \text{ GeV}, \text{MET} > 80 \text{ GeV}$
 - •High kinematic region : H_T >225 GeV, MET>100 GeV

Selected Events in L=2 fb⁻¹ Data Sample

CDF Run II Preliminary

Interpretation of Results in MSSM SUSY Model

- •Choosen MSSM model:
 - $\tilde{\chi}_1^0$ is the LSP
 - $\tilde{u}, \tilde{d}, \tilde{c}, \tilde{s}$ are degenerate in mass
 - $m(\tilde{g})/m(\tilde{q}) > 1.2$
 - •No mSUGRA solution
 - Squark pair production dominates
 - $\tan\beta=3$, $A_T=-500$, $\mu=-800$
- •Decide the kinematic region cuts to be applied on which SUSY points based on lowest (best) a priori cross section upper limit :
 - •Low kinematic (125/80): point 4
 - •High kinematic (225/100): points 1,2,3

SUSY spectrum	$ ilde{q}$ mass (GeV)	\tilde{g} mass (GeV)	$ ilde{\chi}_1^0$ mass (GeV)
1	320	390	60
2	250	450	72
3	220	520	85
4	120	550	89

Cross Section Limit

<u>Summary</u>

- •Tevatron experiments have searched for squarks and gluinos in MET+jets final states on 2 fb⁻¹ data sample
- •No evidence of SUSY yet
- •Expect ~2-3X more data by end of Run II (& 2X more by combining CDF+DØ)
- •Keep our eyes open for any tantalizing hints !!!
- •If nothing found, will provide further important constraints !

Back Up

MET + Jets + Tau : After All Section Cuts

