

Search for W' boson resonances decaying to a top and a bottom quark and Probing anomalous Wtb Couplings

> Frédérique Badaud LPC Clermont-Fd

for the D0 collaboration

- Search for Single top
- W' boson resonances
- Anomalous Wtb couplings

Single Top quark : event selection

- $\begin{array}{l} \bullet 1 \text{ isolated electron or muon} \\ \text{electron } \mathsf{p_T} > 15 \text{ GeV and } |\eta_{\mathsf{det}}| < 1.1 \\ \text{muon } \mathsf{p_T} > 18 \text{ GeV and } |\eta_{\mathsf{det}}| < 2.0 \end{array}$
- missing transverse energy MET > 25GeV

- 2, 3 or 4 jets $p_T > 15 \text{ GeV}$ and $|\eta_{det}| < 3.4$ leading jet $p_T > 25 \text{ GeV}$ and $|\eta_{det}| < 2.5$ second leading jet $p_T > 20 \text{ GeV}$
- at least | b-tagged jet
- backgrounds :W+jets, tt, dibosons (from MonteCarlo) multijets (from data)

• multivariable analyses : multivariable techniques to discriminate signal from background. the variables describe individual object kinematics, global event kinematics and angular correlations.

Cross section measured from $0.9 \, \text{fb}^{-1}$ dataset

$$\sigma(\bar{p} p \rightarrow tb + X, tbq + X) = 4.7 \pm 1.3 \, pb$$

Heavy W' resonances

• effective \mathcal{L} for W' interactions w/ SM fermions f_{ij} written in a model independent form:

$$\mathcal{L} = \frac{V_{f_i f_j}}{2\sqrt{2}} g_w \bar{f}_i \gamma^\mu (a_{f_i f_j}^R (1 + \gamma^5) + a_{f_i f_j}^L (1 - \gamma^5)) W'_\mu f_j + h.c.$$

Right and left couplings of W' to quarks

	a_{ud}^L	a_{tb}^L	a_{ud}^R	a_{tb}^R
purely left handed W'_L	1	1	0	0
purely right handed \bar{W}_R'	0	0	1	1

Production

Decay

search for $W' \rightarrow 3rd$ quark generation

•left-handed W'_L with SM couplings, interference with SM taken into account •right-handed W'_R

+if
$$m(W'_R) > m(\nu_R)$$
 decays to $\ell \nu$ and $\overline{q}q$
+if $m(W'_R) < m(\nu_R)$ only decays to $\overline{q}q$

Left-handed W' : selection and event

• single top selection restricted to 2 or 3 jets, same dataset

• tb invariant mass : $\sqrt{\hat{s}}$ reconstructed with the invariant mass of the leading two jets, the charged lepton and the neutrino by adding their measured momentum 4-vector.

Left-handed W' : selection and event

• single top selection restricted to 2 or 3 jets, same dataset

• tb invariant mass : $\sqrt{\hat{s}}$ reconstructed with the invariant mass of the leading two jets, the charged lepton and the neutrino by adding their measured momentum 4-vector.

process	$SM + W'_L$
single top	6.4 ± 1.4
$t\bar{t}$	59.1 ± 14.4
W + jets	91.0 ± 18.8
$\operatorname{multijets}$	29.7 ± 5.9
Total Bkg	186.1 ± 40.4
Data	182

Right-handed W' : selection and event

• single top selection restricted to 2 or 3 jets, same dataset

• tb invariant mass : $\sqrt{\hat{s}}$ reconstructed with the invariant mass of the leading two jets, the charged lepton and the neutrino by adding their measured momentum 4-vector.

process	W'_R
single top	10.2 ± 2.2
$t\overline{t}$	59.1 ± 14.4
W + jets	91.0 ± 18.8
$\operatorname{multijets}$	29.7 ± 5.9
Total Bkg	190.0 ± 41.2
Data	182

W' : results

• Limits are derived using a binned likelihood constructed from the $\sqrt{\hat{s}}$ spectrum > 400 GeV

Anomalous Wtb couplings

Anomalous Wtb couplings

• general CP-conserving Wtb vertex can be parametrized with the effective lagrangian :

$$\mathcal{L} = -\frac{g}{2\sqrt{2}} V_{tb} \bar{b} \{ \gamma^{\mu} (f_{L_V} (1 - \gamma^5) + f_{R_V} (1 + \gamma^5)) + \frac{t}{M_W} (f_{L_T} (1 - \gamma^5) + f_{R_T} (1 + \gamma^5)) \} t W_{\mu} + h.c.$$

within SM $f_{L_V} = 1$ $V_{tb} \approx 1$ $f_{R_V} = 0$ $f_{L_T} = 0$ $f_{R_T} = 0$

•Assumption : Wtb vertex dominates top quark production and decay :

 $|V_{td}|^2 + |V_{ts}|^2 << |V_{tb}|^2$

•Look at 2 couplings at the same time, assuming the other 2 are negligible.

Consider single top production with the SM Left-handed Vector f_{L_V} coupling with added contribution from

- + the Right-handed Vector f_{R_V} coupling, or
- + the Left-handed Tensor $\int_{C} L_T$ coupling, or
- + the Right-handed Tensor f_{R_T} coupling

Wtb : multivariable analysis • Same selection as single top search, same dataset. • For each coupling scenario (2 signal), train trees in 4 analysis channel defined by lepton flavor and b-tag multiplicity. 100 D0 Runll preliminary 160 D0 Runll preliminary D0 RunII preliminary L_v=1 L,_=1 L,_=1 120 140 —bka bkg -bkg 80 100 $-L_{v}(x5)$ $-L_{v}(x5)$ $-L_{v}(x5)$ 120 Event Yield **Event Yield Event Yield** --- R_T --- R_v 100 **80** 60 data data data 80 60**-40** 60 40 40 20 20 20 Գ **G** ዔ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 **Decision Tree Output Decision Tree Output Decision Tree Output** (f_{L_V}, f_{R_V}) (f_{L_V}, f_{L_T}) (f_{L_V}, f_{R_T}) • The cross-section and $|V_{tb}f_X|^2$ are extracted from the discriminant distributions

- The two-dimensional probability density is projected onto the axis
 - + if the projection has a local maximum, the value is quoted as the coupling

$$|\mathsf{V}_{\mathsf{tb}}f_{L_V}|^2 = 1.4^{+0.9}_{-0.8}$$

+ if it doesn't have a local maximum, a 95% C.L. limit is set

 $|V_{tb}f_{R_T}|^2 < 0.3$ at 95% C.L.

Summary

- 0.9 fb⁻¹ dataset, evidence of single top electroweak production $\sigma(\bar{p} p \rightarrow tb + X, tbq + X) = 4.7 \pm 1.3 \, pb$
- large potential for searches BSM
 - O limits on W' mass

$m(W'_L) >$	731 GeV
$m(W'_R) >$	739 GeV if $m(W'_R) > m(\nu_R)$
$m(W_R') >$	768 GeV if $m(W'_R) < m(\nu_R)$

at 95 % C.L.

O limits on anomalous Wtb couplings

scenario	coupling at 95% C.L.
(f_{L_V}, f_{L_T})	$ V_{tb}f_{L_T} ^2 < 0.5$
(f_{L_V}, f_{L_T})	$ {\sf V}_{\sf tb} f_{R_V} ^2 < 2.5$
(f_{L_V}, f_{L_T})	$ V_{tb}f_{R_T} ^2 < 0.3$

O search for charged Higgs see Y.Peters [P1][143]

• the Tevatron is performing well : more than 3.5 fb^{-1} recorded by experiment

The search for New Physics is not over

