

Search for the SM Higgs Boson in VBF Production Mode (with ATLAS)

Guilherme Nunes Hanninger

(Bonn University)

On behalf of the ATLAS Collaboration

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

SM Higgs Production at the LHC

SM Higgs Final States

Dominant decays for $M_H < 135 \text{ GeV}$: $H \rightarrow bb$ Dominant decay, difficult final state (large tt background) $H \rightarrow \tau \tau$ Attractive discovery channel Dominant decays for $M_H > 135 \text{ GeV}$: $H \rightarrow WW$ and $H \rightarrow ZZ$

Tiny H $\rightarrow\gamma\gamma$: Also important (110 GeV < M_H < 140 GeV)

VBF Channels investigated in ATLAS:

 $\mathsf{VBF} \ \mathrm{H}{\rightarrow}\tau\tau$

VBF $H \rightarrow WW$ (not discussed in this talk)

ATLAS VBF Higgs Studies

Optimize analysis assuming an integrated luminosity of 30fb⁻¹ using:

- State-of-the art Monte Carlo generators (MC@NLO, ALPGEN, HERWIG, PYTHIA, ...)
- Detailed GEANT4-based simulation of the ATLAS detector (including misalignments and distortions)

Year	∫ ℒdt	L
2008	~40 pb ⁻¹	10 ³¹ -10 ³² cm ⁻² s ⁻¹
2009	2 - 3 fb ⁻¹	$8 imes 10^{32}\text{cm}^{-2}\text{s}^{-1}$
2010	~10 fb ⁻¹	$2 imes 10^{33} \text{cm}^{-2} \text{s}^{-1}$
2011	~30 fb ⁻¹	$2 imes 10^{33} ext{cm}^{-2} ext{s}^{-1}$
2012	~100 fb ⁻¹	10 ³⁴ cm ⁻² s ⁻¹

The first five years

VBF Higgs → ττ Signature

- Two tagging jets in forward region
- Higgs boson decay products in the central region
- No color flow between quark lines:
 - No central jets
- Missing transverse momentum: associated to υ 's from τ decays

τ Decays

 $H \rightarrow \tau \tau \rightarrow hh$ (42%):

- Triggers for *hh* channel are under investigation
- Reliable estimate of the QCD jets background can only be

provided with data

• Will not be discussed in this talk

 $H \rightarrow \tau \tau \rightarrow Ih + 3v (46\%) \qquad \text{AND} \qquad H \rightarrow \tau \tau \rightarrow II + 4v (12\%)$

- Easy to trigger (high p_{T} leptons)
- Backgrounds to VBF $H \rightarrow \tau \tau$: Z + jets, W + jets, tt, diboson, WW/ZZ/ZW

Leptonic τ Decays

Decay leptons used for trigger:

- use simple robust trigger signatures (initially):
 - isolated electron with p_T > 22 GeV
 - or isolated μ with p_{τ} > 20 GeV

Lepton selection:

- thresholds for e/μ identification optimised for identification efficiency and fake rejection
- electron:

- p_T > 25 GeV for trigger electron
- p_T > 15 GeV for the other electrons

• muon:

- p_T > 20 GeV for trigger electron
- p_T >10GeV for other muons
- energy isolation within a cone around the e/μ (Isolation $E_{\tau}/p_{\tau} \le 0.1$)

Hadronic τ Decays

Hadronic τ decay:

- $\Gamma \sim 50\%$ single prong (1 charged *h*)
- $\Gamma \sim 15\%$ three prongs (3 charged *h*)
- Decay products collimated into a narrow region
- \rightarrow collimated deposition in EM Calorimeter
- \rightarrow use shower shape variables
- \rightarrow reconstruct π^0 sub-clusters
- \rightarrow isolation cone
- \rightarrow log-likelihood-based discrimination from QCD jets

- Log-likelihood and p_T cuts optimized with respect to s/(s+b)^{1/2}
- p_T> 30 GeV

Tagging Jets

- $|\eta| < 4.9$ (jets as close as 1° to the beam pipe!)
- Tagging jets: 2 highest p_{T} jets

(nearly 100% of the time correctly matches the quark-initiated tagging jets from the hard process)

- Reconstruction efficiency for 2 tagging jets (VBF selection) ~ 95%
- Cuts: $p_T > 40$ GeV and second jet $p_T > 20$ GeV

 $\eta_j \times \eta_j \le 0$, $\Delta \eta_{jj} > 4.4$, $M_{jj} > 700 \text{ GeV}$

Central Jet Veto

Mass Reconstruction

G. Nunes Hanninger (Bonn University)

Estimating Backgrounds from Real Data

Data-driven Background Estimation

 $Z \rightarrow \mu \mu$ + jets has identical jet activity as $Z \rightarrow \tau \tau$ +jets

 \rightarrow Procedure:

 \Rightarrow select Z \rightarrow µµ + jets events

 $\Rightarrow\,$ replace the μ 's by the τ 's

 \Rightarrow carefully treat the decay of the τ

 \rightarrow Full event selection is then applied to the

emulated $Z \rightarrow \tau \tau$ + jets control sample

 \rightarrow Expected uncertainty ~ 10%

 \rightarrow Normalization can be directly obtained from data

Signal Significance

- Extracted from M_{π} spectrum
- Simultaneous fit the signal candidates and the background control samples
 - \rightarrow constrain the shape and normalization of the background from the data-driven analysis
 - \rightarrow uncertainty of the background shape is directly incorporated
- The fit is performed twice:
 - 1) letting the signal and background parameters to float
 - 2) constrain signal normalization to be zero, floating background parameters
- Define the profile likelihood ratio $\boldsymbol{\lambda}$

$$\lambda(\mu = 0) = \frac{L(data|\mu = 0, \hat{b}(\mu = 0), \hat{v}(\mu = 0))}{L(data|\hat{\mu}, \hat{b}, \hat{v})}$$

 μ is the signal rate in units of SM expectation, b is the rate and v is the shape parameters $\hat{\hat{\nu}}$ and $\hat{\hat{b}}$ are best fit with μ fixed to 0; $\hat{\nu}$ and \hat{b} are best fit with μ left floating

- Wilk's theorem states that under certain conditions the distribution of the profile likelihood ratio has an asymptotic form $-2\log\lambda(\mu=0) \sim \chi_1^2$ Ann. Math. Statist. 9 (1938) 60-2
- Thus, significance = $\sqrt{-2\log\lambda(\mu=0)}$

Expected Signal Significance (30fb⁻¹)

Expected Mass Resolution

- Limited by the missing transverse energy resolution $\, \sim \, 10 \; \text{GeV}$
- 2000 pseudo-experiments per input mass point

Systematic Errors

Source	Relative uncertainty	Effect on signal efficiency		
luminosity	± 3%	± 3%		
tau energy scale	± 5%	± 4.9%		
tau ID efficiency	± 5%	± 5%		
	± 7% (η <3.2)			
jet energy scale	± 15% (η >3.2)	+16% / -20%		
	± 5% (on Etmiss)			
total summed in quadrature	-	± 20%		

Jet energy/Etmiss scale is the dominant source of systematics

What if there is no signal?

Expected Exclusion Limits (10 fb⁻¹)

NB: no pileup included in the signal significance estimation

Conclusions

VBF $H \rightarrow \tau \tau$:

- Important discovery channel for SM Higgs with 105 GeV < M_{H} < 140 GeV
- Rich experimental signature

For 30 fb⁻¹ expect:

- ~ 3 5 σ evidence for light SM Higgs
 - Powerful exclusion limits

Outlook:

- Include and limit the effect of pileup
- Continue to improve/optimize the analysis
- Use information from real data as soon as available

Backup slides

ATLAS

Toroid Magnets Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker

Efficiency ~ 97%

Efficiency ~ 80%

Efficiency $\sim 50\%$

Efficiency ~ 60%

Jet Rejection ~104

Jet Rejection ~103

Jet Rejection ~10²

light-quark Jet Rejection ~10²

• Particle identification:

```
muons (|\eta| < 2.5):
```

electrons ($|\eta| < 2.5$): hadronic tau ($|\eta| < 2.5$):

b-Jet ID:

Missing transverse energy

hermetic calorimeter

 $\sigma_{\text{Etmiss}} \sim 0.55 \ (\Sigma E_{T})^{0.5}$

• Jets ($|\eta| < 4.9$)

reconstruction efficiency ~ 95%

G. Nunes Hanninger (Bonn University)

Expected Combined 95% CL Exclusion

Influence of pileup

• e/μ quite robust agains pile-up

ATLAS Preliminary

- jet and Etmiss performance are affected by pileup
- hadronic τ : efficiency can be maintained with pile-up

but jet rejection drop $\sim 50\%$

- mass resolution is degradate from ~ 9.5 to ~ 11.5 GeV for M_{μ} = 120 GeV
- central jet veto drops from ~88% to 75% at 10^{33} cm⁻²s⁻¹ and ~65% at 2×10³³ cm⁻²s⁻¹
- Reconstruction and analysis are beeing re-optimized with pileup. No signal significance is reported under this condition.

Central Jet Veto

Figure 6: Background rejection versus signal sensitivity for the central jet veto with and without pileup. Also shown is the case for $t\bar{t}$ -only background.

Cutflow VBF $H \rightarrow \tau \tau \rightarrow lh$

ATLAS Preliminary

Table 5: Signal cross-sections for the *lh*-channel for various Higgs boson masses.

Mass (GeV)	105	110	115	120	125	130	135	140
Cross section (fb)	394.7	372.0	341.8	309.1	266.8	225.4	180.1	135.8
Trigger	65.6(3)	65.1(2)	61.1(2)	57.2(1)	51.5(2)	44.7(1)	36.5(1)	28.3(1)
Trigger lepton	56.4(3)	56.2(2)	53.2(2)	49.5(1)	44.7(2)	38.9(1)	31.8(1)	24.7(1)
Di-lepton veto	50.0(3)	49.6(2)	46.7(2)	43.4(1)	38.9(2)	34.0(1)	27.6(1)	21.3(1)
Hadronic $ au$	7.7(1)	8.1(1)	8.1(1)	8.02(7)	7.4(1)	6.68(8)	5.72(7)	4.53(9)
Missing $E_T \ge 30 \text{ GeV}$	4.8(1)	5.1(1)	5.08(9)	4.96(5)	4.63(8)	4.16(7)	3.51(6)	2.82(8)
Collinear Approx.	3.19(9)	3.50(8)	3.51(8)	3.34(5)	3.14(7)	2.77(6)	2.37(5)	1.91(6)
Transverse mass	2.53(8)	2.70(7)	2.67(7)	2.46(4)	2.26(6)	1.98(5)	1.64(4)	1.29(5)
N jets \geq 2	2.12(7)	2.22(7)	2.21(6)	2.02(4)	1.80(5)	1.60(4)	1.32(4)	1.00(5)
Forward jet	1.61(7)	1.66(6)	1.73(5)	1.52(3)	1.41(5)	1.20(4)	1.03(3)	0.78(4)
Jet kinematics	0.88(5)	0.86(4)	0.92(4)	0.82(2)	0.73(3)	0.65(3)	0.56(2)	0.42(3)
Central jet veto	0.77(5)	0.77(4)	0.81(4)	0.72(2)	0.63(3)	0.55(2)	0.50(2)	0.38(3)
Mass window	0.68(4)	0.68(4)	0.70(3)	0.61(2)	0.52(3)	0.44(2)	0.40(2)	0.30(3)

Cutflow VBF $H \rightarrow \tau \tau \rightarrow II$

ATLAS Preliminary

Table 4: Signal cross-section for the *11*-channel for various Higgs boson masses.

Mass (GeV)	105	110	115	120	125	130	135	140
Cross section (fb)	394.7	372.0	341.8	309.1	266.8	225.4	180.1	135.8
Trigger	65.6(3)	65.1(2)	61.1(2)	57.2(1)	51.5(2)	44.7(1)	36.5(1)	28.3(1)
Trigger lepton	56.4(3)	56.2(2)	53.2(2)	49.5(1)	44.7(2)	38.9(1)	31.8(1)	24.7(1)
Di-lepton	5.73(7)	5.86(6)	5.80(6)	5.46(3)	4.94(5)	4.30(4)	3.61(4)	2.88(4)
Missing $E_T \ge 40 \text{ GeV}$	3.41(5)	3.49(5)	3.45(5)	3.17(3)	2.94(4)	2.56(4)	2.17(3)	1.78(4)
Collinear Approx.	2.34(5)	2.38(4)	2.33(4)	2.15(2)	1.95(4)	1.69(3)	1.46(2)	1.16(3)
N jets \geq 2	1.96(4)	1.97(4)	1.95(4)	1.77(2)	1.61(3)	1.41(3)	1.20(2)	0.95(3)
Forward jet	1.48(4)	1.49(4)	1.48(3)	1.34(2)	1.21(3)	1.08(3)	0.91(2)	0.73(3)
B-jet veto	1.26(3)	1.30(3)	1.25(3)	1.16(2)	1.04(3)	0.94(2)	0.77(2)	0.64(2)
Jet kinematics	0.70(3)	0.69(2)	0.70(2)	0.63(1)	0.58(2)	0.52(2)	0.43(1)	0.37(2)
Central jet veto	0.61(2)	0.60(2)	0.62(2)	0.56(1)	0.50(2)	0.45(2)	0.38(1)	0.32(2)
Mass window	0.52(2)	0.50(2)	0.51(2)	0.45(1)	0.39(2)	0.34(1)	0.29(1)	0.23(1)

$\mathsf{VBF}\:\mathsf{H}\to\mathsf{WW}$

- Many and large background processes
 - (tt + jets, W + jets, Z + jets, WW + jets, ZZ + jets, ...)
- Clean access to Higgs-W-W-coupling

tt $H \rightarrow bb$

A very complex final state

Dominant background: tt + jets production

Experimental issues:

- b-tagging (efficiency ~ε⁴)
 Good understanding of background shape

SM Higgs production at LHC

Fig. 1: Total cross sections for Higgs production at the LHC. The gluon fusion result is NNLO QCD with soft gluon resummation effects included at NNLL and uses MRST2002 PDFs with renormalization/factorization scales equal to m_h . The vector boson fusion curve is shown at NLO QCD with CTEQ6M PDFs and renormalization/factorization scales equal to m_h . The Vh results (V = W, Z) include NNLO QCD corrections and NLO EW corrections and use MRST2002 PDFs with the renormalization /factorization scales equal to the $m_h - M_V$ invariant mass. The $b\overline{b} \rightarrow h$ result is NNLO QCD, with MRST2002 PDFs, renormalization scale equal to m_h and factorization scale equal to $m_h/4$. The results for $t\overline{t}h$ production are NLO QCD, use CTEQ6M PDFs and set the renormalization/factorization scale to $m_t + m_h/2$ [100].

VBF $H \rightarrow \tau \tau$

G. Nunes Hanninger (Bonn University)