Signatures of non-universal Gaugino and Scalar masses at the Large Hadron Collider (LHC)

Subhaditya Bhattacharya

RECAPP

Harish-Chandra Research Institute, Allahabad, India

Work done with AseshKrishna Datta, and Biswarup Mukhopadhyaya

(arXiv:0708.2427, JHEP 10(2007)080)

(arXiv:0804.4051)

Subhaditya Bhattacharya SUSY08 19Jul.08

– p. 1

Plan of the talk

- Basic ideas behind the work.
- Non-universal gaugino masses
 - Model
 - Choice of Parameters
 - Collider simulation
 - Results
- Non-universal Scalar masses
 - Squark-Slepton non-universality
 - Third family scalar non-universality
 - Scalar non-universality for SO(10) D term

Basic ideas behind the work : Gaugino mass non-universality

- Theoretical prediction → SUSY GUT → Non-universal gaugino masses at M_{GUT} .
- Non-universality of gaugino masses → affects the chargino-neutralino mass composition.
- Collider signature —> should get altered for various gaugino non-universal ratios.
- Intention \rightarrow distinguish them at LHC.
- To do so perform collider simulation for 'multichannel search' over a wide region of parameter space

Basic ideas behind the work: Scalar mass non-universality

- Theoretical SUSY GUT & Various phenomenological models \longrightarrow Non-universal scalar masses at M_{GUT}
- Non-universal scalar masses —> alters scalar mass heirarchy —> alters decay branching fractions.
- Intention \rightarrow distinguish scalar mass scenarios at LHC.
- To do so perform collider simulation for 'multichannel search' over a wide region of parameter space

Non-universal gaugino mass: Model

- Theoretical framework: N=1 Supergravity embedded in SU(5) or SO(10) GUT group.
- Gaugino masses depend crucially on \longrightarrow
 - Gauge kinetic function $f_{\alpha\beta}(\Phi)$.
 - Analytic function of chiral superfields Φ_i .
 - Transforms as —> symmetric product of the adjoint representation

Part of the N=1 supergravity lagrangian containing kinetic energy and mass terms for gauginos and gauge bosons

$$e^{-1}\mathcal{L} = -\frac{1}{4}Ref_{\alpha\beta}(\phi)(-1/2\bar{\lambda}^{\alpha}D\lambda^{\beta})$$

$$- \frac{1}{4}Ref_{\alpha\beta}(\phi)F^{\alpha}_{\mu\nu}F^{\beta\mu\nu}$$

$$+ \frac{1}{4}e^{-G/2}G^{i}((G^{-1})^{j}_{i})[\partial f^{*}_{\alpha\beta}(\phi^{*})/\partial\phi^{*j}]\lambda^{\alpha}\lambda^{\beta} + h.c$$

where

- $G^i = \partial G / \partial \phi_i$ and $(G^{-1})^i_j$ is the inverse matrix of $G^j{}_i \equiv \partial G / \partial \phi^{*i} \partial \phi_j$,
- λ^{α} is the gaugino field, and
- ϕ is the scalar component of the chiral superfield Φ .

In terms of the non-singlet Φ^N fields :

$$f_{\alpha\beta}(\Phi^j) = f_0(\Phi^S)\delta_{\alpha\beta} + \sum_N \xi_N(\Phi^s)\frac{\Phi^N{}_{\alpha\beta}}{M} + \mathcal{O}(\frac{\Phi^N}{M})^2$$

where

• f_0 and ξ^N are functions of chiral singlet superfields and

$$M = M_{Pl} / \sqrt{8\pi}.$$

• Contribution to $f_{\alpha\beta}$ from Φ^N 'has to come' through symmetric products of the adjoint representation of associated GUT group.

• For SU(5) possible non-singlet irreducible representations (to which Φ^N can belong) :

 $(24 \times 24)_{symm} = 1 + 24 + 75 + 200$

• For SO(10) :

 $(45 \times 45)_{symm} = 1 + 54 + 210 + 770$

Subhaditya Bhattacharya SUSY08 19Jul.08

- To obtain low energy effective theory \longrightarrow replace Φ^S and Φ^N by their vev's and get $\langle f_{\alpha\beta} \rangle$.
- $\langle f_{\alpha\beta} \rangle$ get the form $f_{\alpha} \delta_{\alpha\beta} \longrightarrow$ Non-Universal
- The value of $\langle f_{\alpha\beta} \rangle \longrightarrow$ crucially depends on the specific representation responsible for the process.
- If symmetry breaking occurs via gauge singlet fields only $\rightarrow f_{\alpha\beta} = f_0 \delta_{\alpha\beta} \longrightarrow \langle f_{\alpha\beta} \rangle = f_0 \longrightarrow$ Universal

Simplify → Neglect the non-universal contributions to the gauge couplings at the GUT scale.

Representation	$M_3: M_2: M_1$ at M_{GUT}	$M_3:M_2:M_1$ at M_{EWS}
1	1:1:1	6:2:1
24	2:(-3):(-1)	12:(-6):(-1)
75	1:3:(-5)	6:6:(-5)
200	1:2:10	6:4:10

Table 1: Gaugino mass ratios for SU(5).

Considered only the lowest representation (54) of SO(10).

Representation	$M_3:M_2:M_1$ at M_{GUT}	$M_3: M_2: M_1$ at M_{EWSB}
1	1:1:1	6:2:1
54(i): $H \rightarrow SU(2) \times SO(7)$	1:(-7/3):1	7:(-5):1
54(ii) : $H \rightarrow SU(4) \times SU(2) \times SU(2)$	1:(-3/2):(-1)	7:(-3):(-1)

Table 2: Gaugino mass ratios for SO(10).

(Chamoun et al. Nucl.Phys.B 624(2002)81)

Choice of SUSY parameters: Two options explored

- pMSSM: A phenomenological model
 - low-energy scalar masses phenomenological \rightarrow degenerate squark and slepton mass with non-universal M_i at M_{GUT} .
- Non-universal SUGRA:
 - Generated from m_0 , A_0 and $sgn(\mu)$, with non-universal M_i at M_{GUT} .

Non-universal gaugino masses: Collider simulation

- The channels searched for: (ℓ stands for e or μ)
 - Opposite sign dilepton (OSD) : $(\ell^{\pm}\ell^{\mp}) + (\geq 2) jets + E_T/$
 - Same sign dilepton (SSD) : $(\ell^{\pm}\ell^{\pm}) + (\geq 2) jets + E_{T}$
 - Single lepton* $(1\ell + jets)$: $1\ell + (\geq 2) jets + E_T$
 - Trilepton $(3\ell + jets)$: $3\ell + (\geq 2) jets + E_T$
 - Hadronically quiet trilepton* ((3ℓ)): $3\ell + 0 jets + E_T$
 - Inclusive jet (*jets*): (≥ 3) *jets* + E_T

Non-univ gaugino masses: (Collider simulation contd.)

- $E_T \ge 100$ GeV.
- $p_{T_{\ell}} \geq 20 \text{ GeV and } |\eta_{\ell}| \leq 2.5.$
- An isolated lepton should have
 - lepton-lepton separation $\triangle R_{\ell\ell} \geq 0.2$
 - lepton-jet separation $\triangle R_{\ell j} \ge 0.4$
 - the energy deposit due to jet activity around a lepton E_T within $\triangle R \leq 0.2$ of the lepton axis should be ≤ 10 GeV.
- $E_{Tjet} \geq 100 \text{ GeV and } |\eta_{jet}| \leq 2.5.$

Non-univ gaugino masses: (Collider simulation contd.)

- SM Background:
 - All dominant standard model (SM) events generated.
 - $t\bar{t}$ production most serious.
 - In the histograms where any of the entries in the ratio has $\sigma = S/\sqrt{B} \le 2$ for $300 fb^{-1} \rightarrow$ specially marked with a '#'.

Non-universal gaugino masses: Results

Figure 1: Event ratios for pMSSM in SU(5): $m_{\tilde{f}} = 500$ GeV, $\mu = 300$ GeV, $\tan \beta = 40$

Non-universal gaugino masses: Results

Figure 2: Event ratios for pMSSM in SO(10): $m_{\tilde{f}} = 1000$ GeV, $\mu = 1000$ GeV, $\tan \beta = 5$

Non-universal gaugino masses: Conclusions

- In a substantial region of the parameter space →75 and 200 of SU(5) and 54 (i) of SO(10) easily distinguishable.
- 24 of SU(5), 54(ii) of SO(10) and the universal case \rightarrow distinction is relatively difficult.
- Trilepton channel is the most efficient discriminator.
- Extraction of μ in pMSSM kind of framework is a challenging task. \longrightarrow important.

Non-universal scalar mass: Model1

- Model 1: Squark-Slepton Non-universality
 - Squarks and sleptons evolved from \longrightarrow mutually uncorrelated mass parameters $m_{0\tilde{q}}$ and $m_{0\tilde{l}}$ respectively.

Squark-slepton Non-universality: Results

Figure 3: Event ratios for Squark-slepton Non-universality: $\tan \beta = 5$

Subhaditya Bhattacharya SUSY08 19Jul.08

Squark-slepton Non-universality: Results

- Cases with $m_{\tilde{l}^{1,2}} = 250$ GeV, is fairly distinguishable \longrightarrow especially for squark masses on the higher side.
- The $3\ell + jets$ events distinguish $m_{\tilde{l}^{1,2}} = 750 \text{ GeV} \longrightarrow$ more prominent for high gluino mass and large $\tan \beta$.
- Cases with $m_{\tilde{l}^{1,2}} = 500 \text{ GeV} \longrightarrow \text{difficult to differentiate}$ from universal case.

Non-universal scalar mass: Model2

- Model 2: Third family scalar non-universality
 - Third family scalars evolve from separate mass parameter m_0^3 from that of first two families $m_0^{(1,2)}$.
 - I,2 families scalars may be very heavy → so called 'inverted hierarchy'→ suppresses FCNC.

3rd family scalar Non-universality: Results

Figure 4: Event ratios for 3rd generation scalar Nonuniversality: $\tan \beta = 5$

3rd family scalar non-universality: Results

- The ratios are significantly higher for $m_{\tilde{q}^{1,2}} = 10$ TeV—>Distinguishable.
- The ratios are significantly smaller for $m_{\tilde{q}^{1,2}} = 1$ TeV—→Distinguishable.
- Unlike the other cases \rightarrow very little dependence on the value of $\tan \beta$.

Non-universal scalar masses: Model3

- **•** Model 3: Non-universality due to SO(10) D-term
 - Matter fields belong to rep 16 \longrightarrow further classified into submultiplets \longrightarrow depending on the representations of SU(5) to which they belong.
 - $\bar{\mathbf{5}}(D^c \& L)$ or $\mathbf{10}(E^c, U^c \& Q)$.
 - Breakdown of SO(10) to SM gives \longrightarrow different *D*-terms for different SU(5) rep .
 - Respectively for $\overline{5}$ and 10:

$$m_{\overline{5}}^2 = m_0^2 - 1.5Dm_0^2 \quad (for \ D^c \ \& \ L)$$
$$m_{10}^2 = m_0^2 + 0.5Dm_0^2 \quad (for \ E^c, U^c \ \& \ Q)$$

Scalar Non-universality due to SO(10) D - term: Results

Figure 5: Event ratios for Scalar Non-universality due to SO(10) D - term: tan $\beta = 5$

Scalar Non-universality due to SO(10) D - term : Results

- For $m_{\tilde{g}}$ = 1 TeV and 1.5 TeV → distinction between D= 0.5, -0.5 and -1.25 → difficult from the ratio plot.
- For $m_{\tilde{g}}$ = 500 GeV $\longrightarrow D$ =0.5 and D=-1.25 easily distinguishable from the ratios.
- The hadronically quiet trilepton \longrightarrow largely washed out by backgrounds excepting for $m_{\tilde{g}}$ = 500 GeV.

Non-universal scalar mass: Conclusions

- Unlike gaugino non-universality —> schemes of scalar non-universality more non-uniform.
- Easiest identification \longrightarrow 1,2 family very heavy \longrightarrow 'inverted heirarchy'.
- Most difficult Various D-terms, particularly for high gluino mass.

Thank You

Subhaditya Bhattacharya SUSY08 19Jul.08