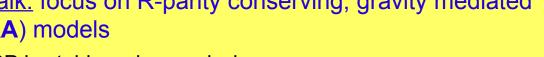


# Data-driven estimations of Standard Model backgrounds to SUSY searches


Federica Legger
(Max-Planck-Institut für Physik, Munich)
on behalf of the ATLAS collaboration

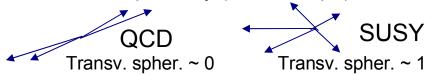





### SUSY searches in ATLAS

For this talk: focus on R-parity conserving, gravity mediated (mSUGRA) models

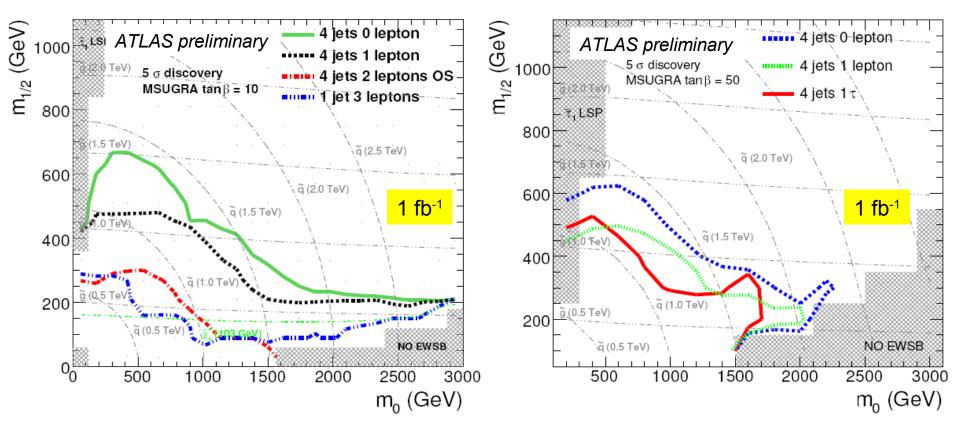



- LSP is stable → large missing energy
- Sparticles produced in pairs → cascade decays
- Signature: Multi jets + leptons + missing transverse energy (E<sub>T miss</sub>)



- at least 4 jets with PT>50GeV
- at least 1 jet with PT>100GeV
- n leptons (e, $\mu$ ) with PT > 20 GeV, n=0,1,...
- $E_{T.miss}$  > min(100 GeV, 0.2 \*Meff)
- Transverse Sphericity > 0.2

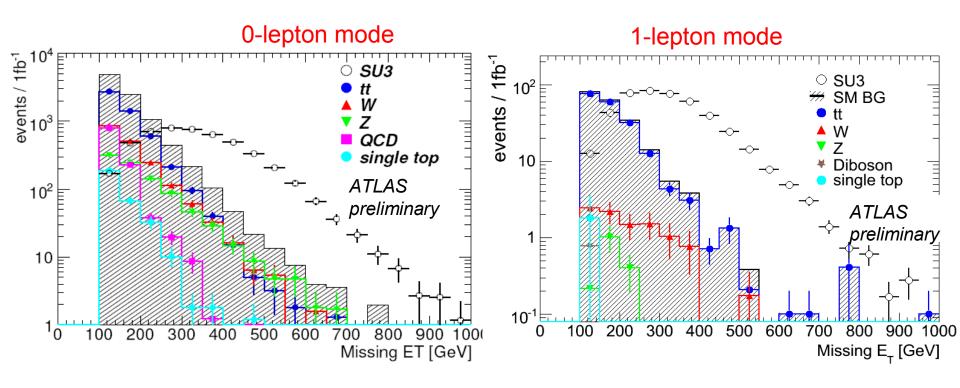
• Effective mass 
$$M_{eff} = \sum_{i=1}^{N} p_T^{jet,i} + \sum_{i=1}^{N} p_T^{lep,i} + E_{T,miss}$$


- Total event activity
- · correlated to mass of sparticles
- Transverse sphericity (event shape)



#### Other topics:

- **GMSB** (SUSY breaking mediated by gauge interaction, LSP is gravitino), **Split-SUSY**. Signature very analysis dependent (high pt photons, long lived sparticles)
- **Exclusive measurements**


### ATLAS sensitivity to SUSY



- $\blacksquare$  E<sub>T,miss</sub> + jets + leptons
- Cut on effective mass optimized to get best signal significance
- Background uncertainties from data-driven methods (assuming 1 fb<sup>-1</sup>)
  - top/W/Z (20%) + QCD (50%) + 1/sqrt(N<sub>background</sub>)



### SM backgrounds to SUSY searches

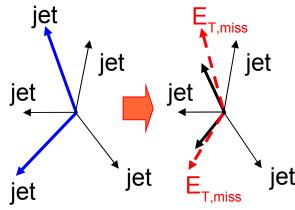


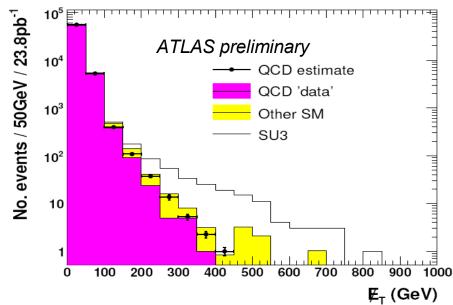
- Should be estimated from data because of poor knowledge of:
  - Underlying Event
  - Parton Showering
  - Cross-sections

- Parton Distribution Functions
- Detector Calibration (jets, E<sub>T.miss</sub>)
- Limited Monte Carlo statistics

### Data-driven background estimation

- Estimate SM backgrounds in a signal region where SUSY may be present;
- SUSY may be discovered if an excess of events with respect to SM predictions is found;
- Derive prediction from a control region, similar to signal region but with no SUSY
  - unbiased estimation of SM background, enough statistics, low SUSY contamination


| QCD                              | jet smearing                                                                              | 1 |                  |
|----------------------------------|-------------------------------------------------------------------------------------------|---|------------------|
| Semileptonic top (tau)           | hadronic tau decay                                                                        | ı | tor<br>de        |
| Z -> vv                          | from Z ->II (replacement + MC)                                                            | L | 0-lepton<br>mode |
| Top + W                          | transverse mass (invariant mass of E <sub>T,miss</sub> and lepton pt) method combined fit | Ţ | 0 _              |
| Semileptonic top<br>tt -> bbqqlv | explicit kinematic reconstruction and selection on top mass (top box method)              |   | 1-lepton<br>mode |
| Dileptonic top                   | HT2 (=lepton pt + 2,3,4 leading jets pt) method                                           |   | <u>+</u> F       |
| tt -> bblvlv                     | kinematic reconstruction top redecay                                                      |   |                  |


In the following, a statistic of 1 fb<sup>-1</sup> is assumed



### QCD background

- Neutrinos emitted from semileptonic decays of b/c (real E<sub>T.miss</sub>)
- Mismeasurement of jet energies (fake E<sub>T,miss</sub>)
- In both cases, E<sub>T,miss</sub> points in one of the jet directions
- QCD background can be estimated from data from multi-jet events with no E<sub>T.miss</sub>
  - Measure jet response function from events where E<sub>T,miss</sub> is (anti-)parallel to a jet
  - Apply to smear (all) jet pt in seed events with low E<sub>T,miss</sub>
  - □ Normalization to QCD jet events with E<sub>T.miss</sub> < 50 GeV</li>



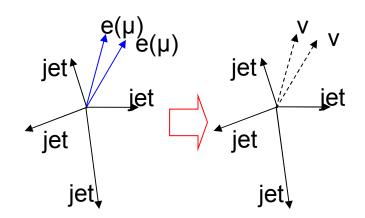


Statistic uncertainties ~1% Systematic uncertainties ~60%

from biased event selection, statistics in non-gaussian tail and jet response function measurement low SUSY contamination



### Replacement Z -> vv


- Control sample:
  - reconstructed Z->ee or Z->μμ events
- Replace charged leptons with neutrinos
  - $\Box$   $E_{T.miss}$  is given by  $pt(II) \sim pt(Z)$
- Correct for lepton identification efficiency
  - from data with tag and probe method
- Correct for acceptance cuts (MC)
- Get Z->vv distributions (normalization and shape)
  - Use extrapolation or MC to get the shape in low stat region


Statistic uncertainties: 13%

Systematic uncertainties: 8%

lepton ID efficiency measurement and  $E_{\scriptscriptstyle T.miss}$  scale

low SUSY contamination





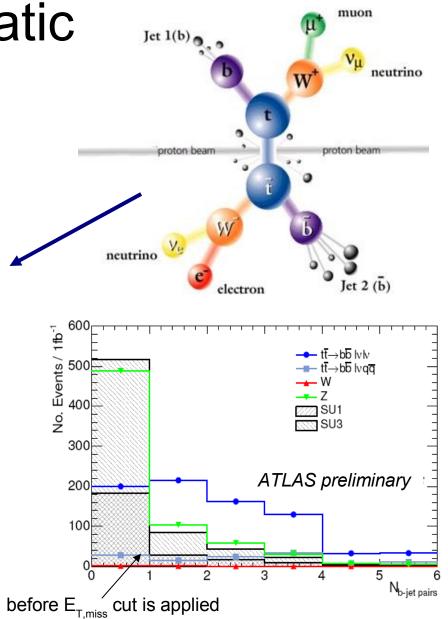


## Dileptonic tt: kinematic reconstruction

Solve system of equations for jets with pt > 20 GeV

$$m_W^2 = (p_{l1} + p_{\nu 1})^2$$

$$m_W^2 = (p_{l2} + p_{\nu 2})^2$$


$$m_t^2 = (p_{l1} + p_{\nu 1} + p_{b1})^2$$

$$m_t^2 = (p_{l2} + p_{\nu 2} + p_{b2})^2$$

$$E_x^{miss} = p_{(\nu 1)x} + p_{(\nu 2)x}$$

$$E_y^{miss} = p_{(\nu 1)y} + p_{(\nu 2)y}$$

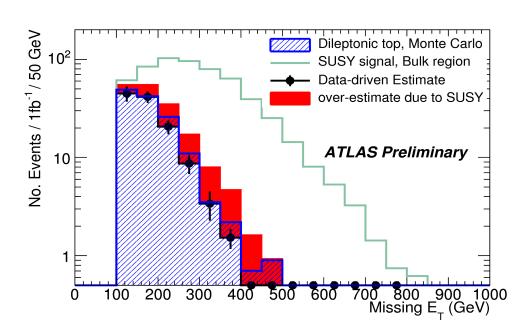
- Quartic equation: 0, 2 or 4 solutions
- •no solutions: SUSY event, semi-leptonic ttbar, ...
- •2 or 4 solutions: dileptonic top





### Dileptonic tt: kinematic reconstruction

- Dileptonic top with one lepton missed because it is
  - a tau (51%)
  - Misidentified (20%)
  - Inside a jet (17%)
  - □ Not in acceptance (9%)
  - □ Both leptons are taus (3%)
- Control sample selection: 2leptons, 3 jets, nb b-jet pairs > 0
- Normalization in low E<sub>T.miss</sub> region

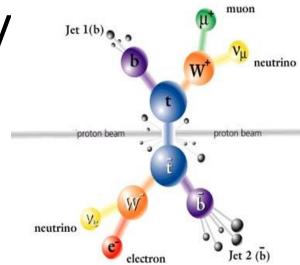

Statistical error: 10%

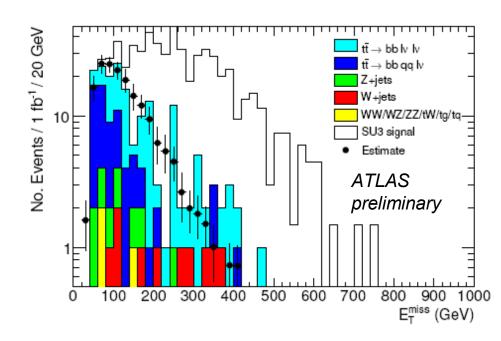
Systematic uncertainties ~20%

Jet energy scale, normalization

SUSY contamination: 50%

- Contribution estimated in the control sample by
  - Replacing a lepton with a tau
  - Removing a lepton
- Recalculate event variables, then apply 1lepton SUSY selection




### Dileptonic tt: top redecay

- Tag seed events (with low E<sub>T,miss</sub>) containing 2 tops
- Reconstruct 4-momentum of tops
- Redecay/hadronize with Pythia
- Simulate decay products with fast simulation (ATLFAST)
- Remove from seed event original decay products and merge new ones
- Apply standard SUSY selection cuts on merged events
- Normalization to *data* in low E<sub>T,miss</sub> region

Statistic uncertainties ~30%
Systematic uncertainties ~30%
SUSY contamination ~60%





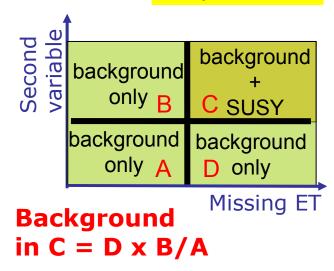


### Conclusions

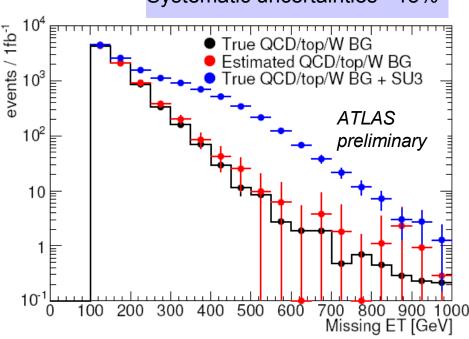
- Main SM backgrounds to SUSY searches are tt, W+jets, Z+jets, QCD events
- Several methods are being developed in ATLAS to estimate SM backgrounds
  - Complementary methods are necessary for such a crucial issue!!!

|                             | Stat. | Syst   | SUSY | _        |
|-----------------------------|-------|--------|------|----------|
| QCD                         | 1%    | 60%    | <1%  | de de    |
| Semileptonic top (tau)      | 6%    | 10-15% | <1%  | -lep     |
| Z -> vv                     | 8-13% | 10-15% | <1%  | <b>—</b> |
| Top + W                     | 4-8%  | 15%    | 15%  |          |
| Semileptonic top            | 5%    | 22%    | <1%  | lep      |
| Dileptonic top              | 10%   | 20%    | 50%  |          |
| Assuming 1 fb <sup>-1</sup> |       |        | 1    |          |

- Presence of SUSY will affect background estimates, however SUSY excess will be larger (even with 1fb<sup>-1</sup>)
- Data-driven estimation methods are necessary to keep background under control and key to SUSY discovery




## Spare slides




### tt + W: transverse mass

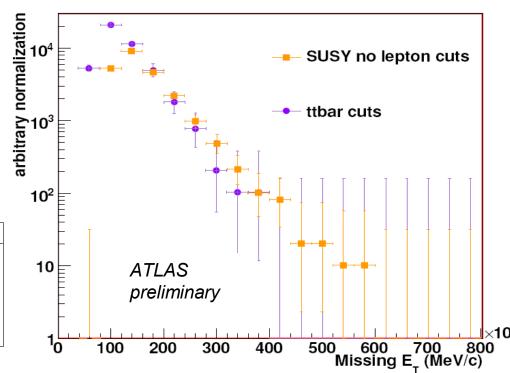
- Semileptonic top can contribute to 0lepton mode searches when the lepton is not identified
  - Tau, out of acceptance, inside jet
- Control sample
  - SUSY selection + MT < 100 GeV + 1 lepton
- The isolated lepton is then removed from the event, and all kinematic variables recalculated
- Normalization
  - 100 GeV < MET < 200 GeV</li>
- QCD estimation also included
- SUSY contamination:
  - extract from control sample





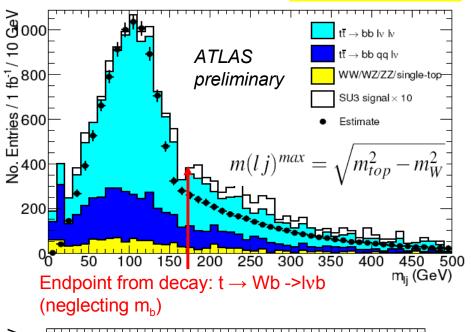


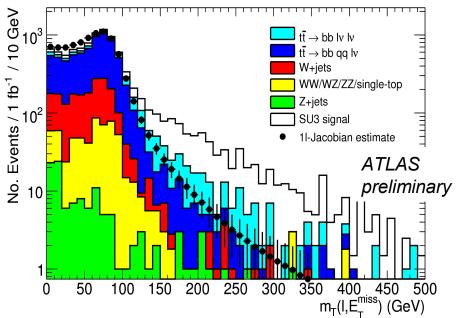



### Semileptonic tt (with tau)

- Independent event reconstruction on hadronic and leptonic side
  - Hadronic top: W (dijet combination with mass closest to PDG value) + closest b-jet (in  $\Delta R$ )
  - Leptonic W: tau + MET (collinear approximation)

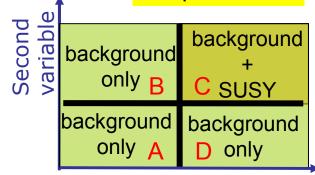
Statistic uncertainties ~6%


Systematic uncertainties ~15%


| Systematic variation               | Cross section variation (%) |
|------------------------------------|-----------------------------|
| Jet Energy Scale                   | 2.5                         |
| b-tagging efficiency               | 7.5                         |
| light quark rejection in b-tag     | 1.3                         |
| au-ID efficiency                   | 3.4                         |
| light quark rejection in $	au$ -ID | 4.5                         |



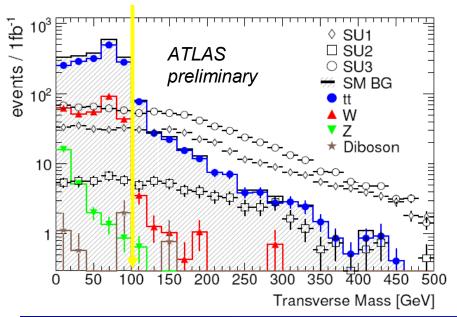
## Dileptonic tt: top redecay

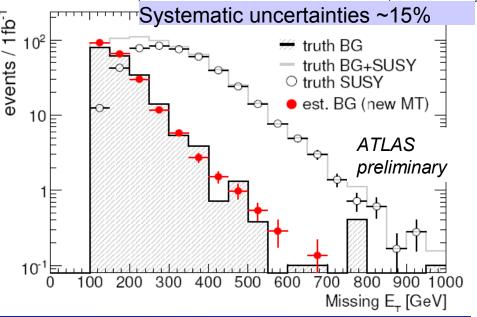

- Dileptonic top selection
  - J45\_xE50 jet + MET trigger
  - 2 jets with pt > 20 GeV
  - 2 OS leptons pt > 20 GeV
  - MET < ½ (pt(lepton1) + pt(lepton2))
  - mass(lepton,jet) < 155 GeV</li>
  - Solve system for p(v)
- Semileptonic top, W, Z contribution estimated from MET distribution from events with MT < 100 GeV</li>
  - hard MT cut (MT>150 GeV) → semileptonic background is sub-dominant.
  - events in Jacobian peak smeared with MC function to simulate tail of MT distribution





### tt + W: transverse mass


- Transverse mass and MET uncorrelated
- Control sample
  - SUSY selection + MT < 100 GeV</li>
- SUSY contamination: extract from control sample
  - assume same SUSY signal ratio in control and signal region for all SUSY samples




Missing ET

### Background in $C = D \times B/A$

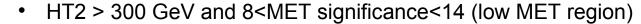
|                                 | Syst. error |
|---------------------------------|-------------|
| Jet energy scale                | < 5%        |
| Lepton ID efficiency            | 7%          |
| MC@NLO vs ALPGEN                | 8%          |
| MC parameter variation (ALPGEN) | < 5%        |

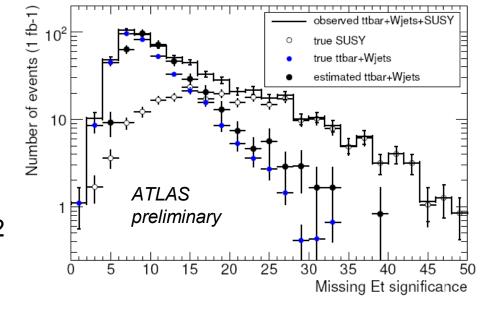






## Dileptonic tt with one misidentified lepton: HT2


- Control sample
  - SUSY selection + HT2 < 300 GeV</li>


$$HT2 = \sum_{i=2}^{4} p_T^{\text{jet}i} + p_T^{\text{lepton}}$$

MET significance uncorrelated to HT2

$$E_T/[0.49 \cdot \sqrt{\sum E_T}]$$



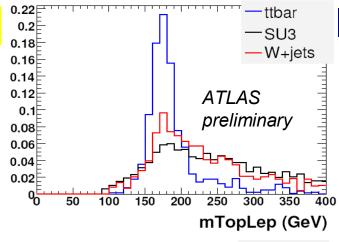


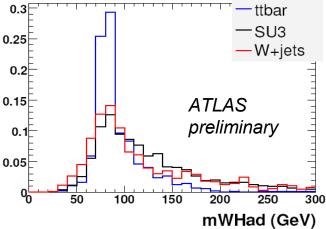


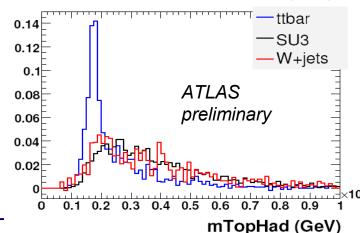
Systematic uncertainties (MC) ~20%

Systematic uncertainties (detector) ~20%




### Semileptonic tt: top box

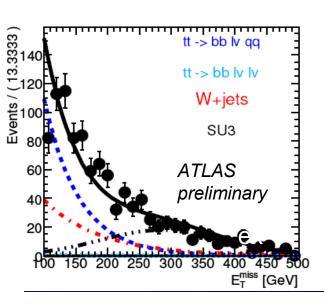

- Reconstruct leptonic W assuming neutrino from W responsible for all MET
- Reconstruct "best" (mass closest to top mass)
   leptonic top with one of the leading jets
- Reconstruct best hadronic W with the three remaining leading jets
- Reconstruct best hadronic top
- Top box cuts (define control sample)

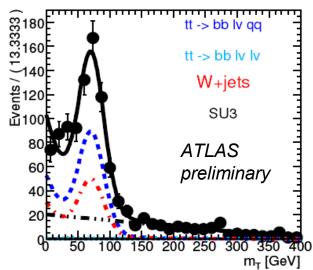

$$|M_{Top-lep} - M_{Top}| < 25 \text{ GeV}$$
  
 $|M_{W-had} - M_{W}| < 15 \text{ GeV}$   
 $|M_{Top-had} - M_{Top}| < 25 \text{ GeV}$ 

Extrapolation to signal region using MC

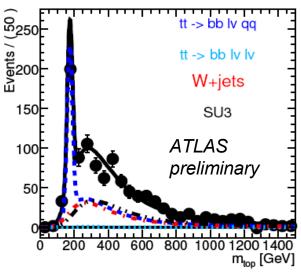
| Source                          | Contribution % |  |
|---------------------------------|----------------|--|
| Jet energy scale                | 20             |  |
| $E_T$ scale                     | 2              |  |
| MC Model dependence of $R_{tt}$ | 8              |  |
| Systematic uncertainties ~22%   |                |  |





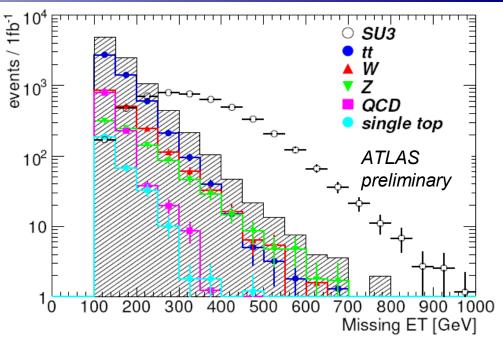


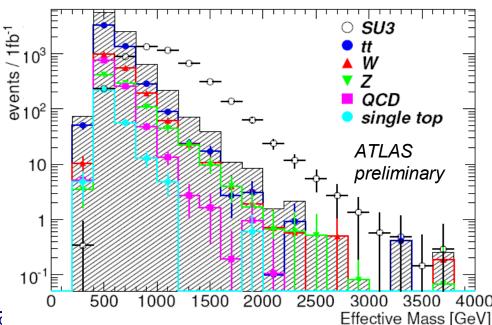


### tt + W: combined fit

- Fit three observables: **MET, MT and Mtop** (invariant mass of 3 jets with largest vector PT sum)
- Sideband: SUSY selection + MT < 150 GeV OR MET < 200 GeV
- Signal: SUSY selection + MT > 150 GeV AND MET > 200 GeV
- All SUSY models (except SU4) have similar behavious in SB region in MT and MET → build a model background only vs background+SUSY
- Relax all parameters except the SUSY ansatz shape






### Systematic uncertainties ~20%



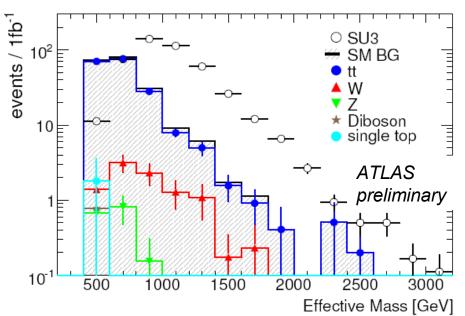

## 0-lepton search mode

- Selection cuts:
  - □ at least 4 jets with PT>50GeV
  - □ at least 1 jet with PT>100GeV
  - $^{\square}$  0 lepton (e,  $\mu$ ) with PT > 20 GeV
  - □ MET > 100 GeV
  - MET > 0.2 effective mass
  - □ Transverse Sphericity ST > 0.2
  - $\Box$   $\Delta \phi(ET jet i) > 0.2 (i = 1, 2, 3)$
- Main backgrounds:
  - □ tt
  - □ W+jets
  - □ Z+jets
  - □ QCD

| SM  | 0-I |
|-----|-----|
| tt  | 62% |
| W   | 17% |
| Z   | 10% |
| QCD | 10% |






## 1-lepton search mode

- Selection cuts:
  - □ at least 4 jets with PT>50GeV
  - □ at least 1 jet with PT>100GeV
  - $\Box$  1 lepton (e,  $\mu$ ) with PT > 20 GeV
  - □ MET > 100 GeV
  - □ MET > 0.2 effective mass
  - □ Transverse Sphericity ST > 0.2
  - transverse mass(lepton, ET) >
    100GeV
- Main backgrounds:
  - $\Box$  tt
  - □ W+jets

| SM  | 1-I |
|-----|-----|
| tt  | 91% |
| W   | 7%  |
| Z   | 1%  |
| QCD | <1% |







### Object definition

#### Electrons

- □ Pt > 10 GeV and |eta|<2.5</p>
- Veto on events with an electron in the crack (1.37<|eta|<2.5)</li>
- □ Calorimeter isolation in a cone (0.2) <10 GeV
- Angular distance to closest jet > 0.4 (after overlap removal)

#### Muons

- Pt > 10 GeV and |eta|<2.5
- Chi2 > 100
- Calorimeter isolation in a cone (0.2) <10 GeV</li>
- Angular distance to closest jet > 0.4 (after overlap removal)

#### Jets

• Pt > 20 GeV and |eta|<2.5

#### Electron/Jet overlap removal

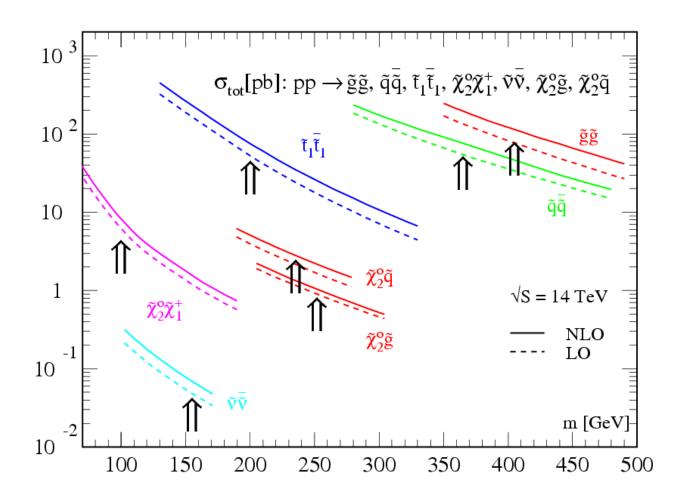
- Jets matching an electron within 0.2 cone
- Transverse sphericity: use all jets with |eta|<2.5 and leptons
- Effective mass: use 4 leading jets with |eta|<2.5 and leptons



### MC background estimation

■ Will **ROUGHLY** be subject to the following uncertainties:

| • | Underlying Event & Parton Distribution Functions   | 20%  |
|---|----------------------------------------------------|------|
| • | Cross-sections                                     | 50%  |
|   | <ul> <li>No NLO calculations for tt</li> </ul>     |      |
| • | Parton Showering                                   | 50%  |
|   | After accurate normalization to data has been made |      |
| • | Detector Calibration (JES, MET)                    | 30%  |
| • | Detector simulation                                | 100% |
| • | Limited Monte Carlo statistics                     |      |




## Background estimation for multileptons analysis

- OS 2-lepton & tau searches
  - MT method
  - □ HT2 method
  - Top redecay
  - □ Top kinematic reconstruction
- SS 2-lepton searches
  - Lepton isolation



### Cross sections at LHC



### w.

### mSUGRA benchmark points

- We consider the following points in the mSUGRA parameter space:
  - SU1  $m_0 = 70$  GeV,  $m_{1/2} = 350$  GeV,  $A_0 = 0$ ,  $\tan \beta = 10$ ,  $\mu > 0$ . Coannihilation region with nearly degenerate  $\tilde{\chi}_1^0$  and  $\tilde{\ell}$ .
  - SU2  $m_0 = 3550$  GeV,  $m_{1/2} = 300$  GeV,  $A_0 = 0$ ,  $\tan \beta = 10$ ,  $\mu > 0$ . Focus point region near boundary where  $\mu^2 < 0$ , so light Higgsions which annihilate efficiently.
  - SU3  $m_0 = 100$  GeV,  $m_{1/2} = 300$  GeV,  $A_0 = -300$  GeV,  $\tan \beta = 6$ ,  $\mu > 0$ . Bulk region: relatively light sleptons enhance LSP annihilation.
  - SU4  $m_0 = 200$  GeV,  $m_{1/2} = 160$  GeV,  $A_0 = -400$  GeV,  $\tan \beta = 10$ ,  $\mu > 0$ . Low mass point close to Tevatron bound.
  - SU6  $m_0 = 320$  GeV,  $m_{1/2} = 375$  GeV,  $A_0 = 0$ ,  $\tan \beta = 50$ ,  $\mu > 0$ . Funnel region with  $2M_{\tilde{\chi}_1^0} \approx M_A$ . Since  $\tan \beta \gg 1$ , A is wide and  $\tau$  decays dominate.
  - SU8.1  $m_0 = 210$  GeV,  $m_{1/2} = 360$  GeV,  $A_0 = 0$ ,  $\tan \beta = 40$ ,  $\mu > 0$ . Variant of coannihilation region with  $\tan \beta \gg 1$ , so that only  $M(\tilde{\tau}_1) M(\tilde{\chi}_1^0)$  is small.
- For all these points, gluino mass < 1 TeV, and it's 6-8x neutralino mass. For all points except SU2, squark and gluino masses are comparable, therefore they are strongly produced and decay giving hard jets, leptons and MET.</p>