Data-driven estimations of Standard Model backgrounds to SUSY searches

Federica Legger
(Max-Planck-Institut für Physik, Munich)
on behalf of the ATLAS collaboration
For this talk: focus on R-parity conserving, gravity mediated (mSUGRA) models

- LSP is stable → large missing energy
- Sparticles produced in pairs → cascade decays
- Signature: Multi jets + leptons + missing transverse energy ($E_{T,\text{miss}}$)

Baseline selection cuts:
- at least 4 jets with PT>50GeV
- at least 1 jet with PT>100GeV
- n leptons (e, μ) with PT > 20 GeV, $n=0,1,\ldots$
- $E_{T,\text{miss}} > \min(100 \text{ GeV}, 0.2 \times \text{Meff})$
- Transverse Sphericity > 0.2

- Effective mass
 \[M_{\text{eff}} = \sum_{i=1}^{N} p_{T,jet,i}^2 + \sum_{i=1}^{N} p_{T,lep,i}^2 + E_{T,\text{miss}} \]
 - Total event activity
 - correlated to mass of sparticles
- Transverse sphericity (event shape)

- Other topics:
 - GMSB (SUSY breaking mediated by gauge interaction, LSP is gravitino), Split-SUSY. Signature very analysis dependent (high pt photons, long lived sparticles)
 - Exclusive measurements
ATLAS sensitivity to SUSY

- $E_{T,\text{miss}} + \text{jets + leptons}$
- Cut on effective mass optimized to get best signal significance
- Background uncertainties from data-driven methods (assuming 1 fb$^{-1}$)
 - top/W/Z (20%) + QCD (50%) + 1/sqrt(N$_{\text{background}}$)
SM backgrounds to SUSY searches

- Should be estimated from data because of poor knowledge of:
 - Underlying Event
 - Parton Showering
 - Cross-sections
 - Parton Distribution Functions
 - Detector Calibration (jets, $E_{T,miss}$)
 - Limited Monte Carlo statistics
Data-driven background estimation

- Estimate SM backgrounds in a **signal region** where SUSY may be present;
- SUSY may be discovered if an excess of events with respect to SM predictions is found;
- Derive prediction from a **control region**, similar to signal region but with no SUSY

- unbiased estimation of SM background, enough statistics, low SUSY contamination

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>QCD</td>
<td>jet smearing</td>
</tr>
<tr>
<td>Semileptonic top (tau)</td>
<td>hadronic tau decay</td>
</tr>
<tr>
<td>$Z \rightarrow \nu\nu$</td>
<td>from $Z \rightarrow \ell\ell$ (replacement + MC)</td>
</tr>
<tr>
<td>Top + W</td>
<td>transverse mass (invariant mass of $E_{T,\text{miss}}$ and lepton pt) method combined fit</td>
</tr>
<tr>
<td>Semileptonic top</td>
<td>explicit kinematic reconstruction and selection on top mass (top box method)</td>
</tr>
<tr>
<td>$tt \rightarrow bbqq\ell\ell$</td>
<td>HT2 (=lepton pt + 2,3,4 leading jets pt) method</td>
</tr>
<tr>
<td>Dileptonic top</td>
<td>kinematic reconstruction</td>
</tr>
<tr>
<td>$tt \rightarrow bb\ell\ell\ell$</td>
<td>top redecay</td>
</tr>
</tbody>
</table>

In the following, a statistic of 1 fb$^{-1}$ is assumed
QCD background

- Neutrinos emitted from semileptonic decays of b/c (real $E_{T,\text{miss}}$)
- Mismeasurement of jet energies (fake $E_{T,\text{miss}}$)
- In both cases, $E_{T,\text{miss}}$ points in one of the jet directions
- QCD background can be estimated from data from multi-jet events with no $E_{T,\text{miss}}$

 □ Measure jet response function from events where $E_{T,\text{miss}}$ is (anti-)parallel to a jet
 □ Apply to smear (all) jet pt in seed events with low $E_{T,\text{miss}}$
 □ Normalization to QCD jet events with $E_{T,\text{miss}} < 50$ GeV

ATLAS preliminary

Statistic uncertainties ~1%
Systematic uncertainties ~60%
from biased event selection, statistics in non-gaussian tail and jet response function measurement
low SUSY contamination
Replacement Z -> νν

- Control sample:
 - reconstructed Z->ee or Z->μμ events
- Replace charged leptons with neutrinos
 - $E_{T,\text{miss}}$ is given by $p_{T}(ll)\sim p_{T}(Z)$
- Correct for lepton identification efficiency
 - from data with tag and probe method
- Correct for acceptance cuts (MC)
- Get Z->νν distributions (normalization and shape)
 - Use extrapolation or MC to get the shape in low stat region

Statistic uncertainties: 13%
Systematic uncertainties: 8%
- lepton ID efficiency measurement and $E_{T,\text{miss}}$ scale
- low SUSY contamination

$\text{BR}(Z \rightarrow \nu\nu) / \text{BR}(Z\rightarrow ll) \sim 6$
Dileptonic tt: kinematic reconstruction

- Solve system of equations for jets with pt > 20 GeV

\[
\begin{align*}
m_W^2 &= (p_{l1} + p_{\nu1})^2 \\
m_W^2 &= (p_{l2} + p_{\nu2})^2 \\
m_t^2 &= (p_{l1} + p_{\nu1} + p_{b1})^2 \\
m_t^2 &= (p_{l2} + p_{\nu2} + p_{b2})^2 \\
E_x^{miss} &= p_{(\nu1)x} + p_{(\nu2)x} \\
E_y^{miss} &= p_{(\nu1)y} + p_{(\nu2)y}
\end{align*}
\]

- Quartic equation: 0, 2 or 4 solutions
- no solutions: SUSY event, semi-leptonic ttbar, …
- 2 or 4 solutions: dileptonic top
Dileptonic tt: kinematic reconstruction

- Dileptonic top with one lepton missed because it is
 - a tau (51%)
 - Misidentified (20%)
 - Inside a jet (17%)
 - Not in acceptance (9%)
 - Both leptons are taus (3%)

- Control sample selection: 2 leptons, 3 jets, nb b-jet pairs > 0

- Normalization in low $E_{T,\text{miss}}$ region

- Contribution estimated in the control sample by
 - Replacing a lepton with a tau
 - Removing a lepton

- Recalculate event variables, then apply 1-lepton SUSY selection

Statistical error: 10%
Systematic uncertainties ~20%
Jet energy scale, normalization
SUSY contamination: 50%

\[\text{ATLAS Preliminary} \]
Dileptonic $t\bar{t}$: top redecay

- Tag seed events (with low $E_{T,miss}$) containing 2 tops
- Reconstruct 4-momentum of tops
- Redecay/hadronize with Pythia
- Simulate decay products with fast simulation (ATLFAST)
- Remove from seed event original decay products and merge new ones
- Apply standard SUSY selection cuts on merged events
- Normalization to data in low $E_{T,miss}$ region

Statistic uncertainties ~30%
Systematic uncertainties ~30%
SUSY contamination ~60%

ATLAS preliminary
Conclusions

- Main SM backgrounds to SUSY searches are $t \bar{t}$, $W+\text{jets}$, $Z+\text{jets}$, QCD events.
- Several methods are being developed in ATLAS to estimate SM backgrounds.
 - Complementary methods are necessary for such a crucial issue!!
- Presence of SUSY will affect background estimates, however SUSY excess will be larger (even with 1fb$^{-1}$).
- Data-driven estimation methods are necessary to keep background under control and key to SUSY discovery.

<table>
<thead>
<tr>
<th>Source</th>
<th>Stat.</th>
<th>Syst</th>
<th>SUSY</th>
</tr>
</thead>
<tbody>
<tr>
<td>QCD</td>
<td>1%</td>
<td>60%</td>
<td><1%</td>
</tr>
<tr>
<td>Semileptonic top (tau)</td>
<td>6%</td>
<td>10-15%</td>
<td><1%</td>
</tr>
<tr>
<td>$Z \rightarrow \nu\nu$</td>
<td>8-13%</td>
<td>10-15%</td>
<td><1%</td>
</tr>
<tr>
<td>Top + W</td>
<td>4-8%</td>
<td>15%</td>
<td>15%</td>
</tr>
<tr>
<td>Semileptonic top</td>
<td>5%</td>
<td>22%</td>
<td><1%</td>
</tr>
<tr>
<td>Dileptonic top</td>
<td>10%</td>
<td>20%</td>
<td>50%</td>
</tr>
</tbody>
</table>

Assuming 1 fb$^{-1}$
Spare slides
tt + W: transverse mass

- Semileptonic top can contribute to 0-lepton mode searches when the lepton is not identified
 - Tau, out of acceptance, inside jet
- Control sample
 - SUSY selection + MT < 100 GeV + 1 lepton
- The isolated lepton is then removed from the event, and all kinematic variables recalculated
- Normalization
 - 100 GeV < MET < 200 GeV
- QCD estimation also included
- SUSY contamination:
 - extract from control sample

Background in C = D x B/A

Systematic uncertainties ~15%

![Graph showing event distribution vs. Missing ET]
Semileptonic tt (with tau)

- Independent event reconstruction on hadronic and leptonic side
 - Hadronic top: W (dijet combination with mass closest to PDG value) + closest b-jet (in ΔR)
 - Leptonic W: tau + MET (collinear approximation)

Statistic uncertainties ~6%
Systematic uncertainties ~15%

<table>
<thead>
<tr>
<th>Systematic variation</th>
<th>Cross section variation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet Energy Scale</td>
<td>2.5</td>
</tr>
<tr>
<td>b-tagging efficiency</td>
<td>7.5</td>
</tr>
<tr>
<td>light quark rejection in b-tag</td>
<td>1.3</td>
</tr>
<tr>
<td>τ-ID efficiency</td>
<td>3.4</td>
</tr>
<tr>
<td>light quark rejection in τ-ID</td>
<td>4.5</td>
</tr>
</tbody>
</table>
Dileptonic tt: top reddecay

- Dileptonic top selection
 - J45_xE50 jet + MET trigger
 - 2 jets with pt > 20 GeV
 - 2 OS leptons pt > 20 GeV
 - MET < \(\frac{1}{2} (pt(\text{lepton1}) + pt(\text{lepton2})) \)
 - mass(\text{lepton,jet}) < 155 GeV
 - Solve system for p(\nu)

- Semileptonic top, W, Z contribution estimated from MET distribution from events with MT < 100 GeV
 - hard MT cut (MT>150 GeV) → semi-leptonic background is sub-dominant.
 - events in Jacobian peak smeared with MC function to simulate tail of MT distribution

Endpoint from decay: \(t \rightarrow Wb \rightarrow l\nu b \) (neglecting \(m_b \))
tt + W: transverse mass

- Transverse mass and MET uncorrelated
- Control sample
 - SUSY selection + MT < 100 GeV
- SUSY contamination: extract from control sample
 - assume same SUSY signal ratio in control and signal region for all SUSY samples

Background in C = D x B/A

Systematic uncertainties ~15%

<table>
<thead>
<tr>
<th>Source</th>
<th>Syst. error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet energy scale</td>
<td>< 5%</td>
</tr>
<tr>
<td>Lepton ID efficiency</td>
<td>7%</td>
</tr>
<tr>
<td>MC@NLO vs ALPGEN</td>
<td>8%</td>
</tr>
<tr>
<td>MC parameter variation (ALPGEN)</td>
<td>< 5%</td>
</tr>
</tbody>
</table>
Dileptonic tt with one misidentified lepton: HT2

- **Control sample**
 - SUSY selection + HT2 < 300 GeV
 \[
 HT2 = \sum_{i=2}^{4} p_{T}^{\text{jet}i} + p_{T}^{\text{lepton}}
 \]

- **MET significance uncorrelated to HT2**
 \[
 \frac{\not{E}_T}{0.49 \cdot \sqrt{\sum E_T}}
 \]

- **Normalization region:**
 - HT2 > 300 GeV and 8<MET significance<14 (low MET region)

Systematic uncertainties (MC) ~20%
Systematic uncertainties (detector) ~20%
Semileptonic tt: top box

- Reconstruct leptonic W assuming neutrino from W responsible for all MET
- Reconstruct “best” (mass closest to top mass) leptonic top with one of the leading jets
- Reconstruct best hadronic W with the three remaining leading jets
- Reconstruct best hadronic top
- Top box cuts (define control sample)
 \[\left| M_{Top-lep} - M_{Top} \right| < 25 \text{ GeV} \]
 \[\left| M_{W-had} - M_{W} \right| < 15 \text{ GeV} \]
 \[\left| M_{Top-had} - M_{Top} \right| < 25 \text{ GeV} \]
- Extrapolation to signal region using MC

<table>
<thead>
<tr>
<th>Source</th>
<th>Contribution %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet energy scale</td>
<td>20</td>
</tr>
<tr>
<td>E_T scale</td>
<td>2</td>
</tr>
<tr>
<td>MC Model dependence of R_t</td>
<td>8</td>
</tr>
</tbody>
</table>

Systematic uncertainties ~22%
tt + W: combined fit

- Fit three observables: **MET, MT and Mtop** (invariant mass of 3 jets with largest vector PT sum)
- **Sideband:** SUSY selection + MT < 150 GeV OR MET < 200 GeV
- **Signal:** SUSY selection + MT > 150 GeV AND MET > 200 GeV
- All SUSY models (except SU4) have similar behaviour in SB region in MT and MET → build a model background only vs background+SUSY
- Relax all parameters except the SUSY ansatz shape

Systematic uncertainties ~20%
0-lepton search mode

- **Selection cuts:**
 - at least 4 jets with PT>50GeV
 - at least 1 jet with PT>100GeV
 - 0 lepton (e, μ) with PT > 20 GeV
 - MET > 100 GeV
 - MET > 0.2 effective mass
 - Transverse Sphericity ST > 0.2
 - Δφ(ET – jet i) > 0.2 (i = 1, 2, 3)

- **Main backgrounds:**
 - tt
 - W+jets
 - Z+jets
 - QCD

<table>
<thead>
<tr>
<th>0-l</th>
<th>SM</th>
<th>tt</th>
<th>W</th>
<th>Z</th>
<th>QCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-l</td>
<td>0-l</td>
<td>62%</td>
<td>17%</td>
<td>10%</td>
<td>10%</td>
</tr>
</tbody>
</table>
1-lepton search mode

- Selection cuts:
 - at least 4 jets with PT > 50 GeV
 - at least 1 jet with PT > 100 GeV
 - 1 lepton (e, \(\mu \)) with PT > 20 GeV
 - MET > 100 GeV
 - MET > 0.2 effective mass
 - Transverse Sphericity ST > 0.2
 - transverse mass(lepton, ET) > 100 GeV

- Main backgrounds:
 - \(\text{tt} \)
 - \(W + \text{jets} \)

\begin{tabular}{|c|c|}
 \hline
 SM & 1-l \tabularnewline
 \hline
 \(\text{tt} \) & 91\% \tabularnewline
 \(W \) & 7\% \tabularnewline
 \(Z \) & 1\% \tabularnewline
 QCD & <1\% \tabularnewline
 \hline
\end{tabular}
Object definition

- **Electrons**
 - Pt > 10 GeV and |eta|<2.5
 - Veto on events with an electron in the crack (1.37<|eta|<2.5)
 - Calorimeter isolation in a cone (0.2) <10 GeV
 - Angular distance to closest jet > 0.4 (after overlap removal)

- **Muons**
 - Pt > 10 GeV and |eta|<2.5
 - Chi2 > 100
 - Calorimeter isolation in a cone (0.2) <10 GeV
 - Angular distance to closest jet > 0.4 (after overlap removal)

- **Jets**
 - Pt > 20 GeV and |eta|<2.5

- **Electron/Jet overlap removal**
 - Jets matching an electron within 0.2 cone

- **Transverse sphericity:** use all jets with |eta|<2.5 and leptons

- **Effective mass:** use 4 leading jets with |eta|<2.5 and leptons
Will **ROUGHLY** be subject to the following uncertainties:

- Underlying Event & Parton Distribution Functions 20%
- Cross-sections 50%
 - No NLO calculations for tt
- Parton Showering 50%
 - After accurate normalization to data has been made
- Detector Calibration (JES, MET) 30%
- Detector simulation 100%
- Limited Monte Carlo statistics
Background estimation for multi-leptons analysis

- OS 2-lepton & tau searches
 - MT method
 - HT2 method
 - Top redecay
 - Top kinematic reconstruction
- SS 2-lepton searches
 - Lepton isolation
Cross sections at LHC

\[\sigma_{\text{tot}}[^{\text{pb}}]: \text{pp} \rightarrow \tilde{g}\tilde{g}, \tilde{q}\tilde{q}, \tilde{t}_{1}\tilde{t}_{1}, \chi_{2}\chi_{1}^{\pm}, \nu\bar{\nu}, \chi_{2}\tilde{g}, \chi_{2}\tilde{q} \]

\[\sqrt{S} = 14 \text{ TeV} \]

\[m [\text{GeV}] \]
mSUGRA benchmark points

- We consider the following points in the mSUGRA parameter space:

SU1 $m_0 = 70$ GeV, $m_{1/2} = 350$ GeV, $A_0 = 0$, $\tan\beta = 10$, $\mu > 0$. Coannihilation region with nearly degenerate $\tilde{\chi}_1^0$ and $\tilde{\ell}$.

SU2 $m_0 = 3550$ GeV, $m_{1/2} = 300$ GeV, $A_0 = 0$, $\tan\beta = 10$, $\mu > 0$. Focus point region near boundary where $\mu^2 < 0$, so light Higgsions which annihilate efficiently.

SU3 $m_0 = 100$ GeV, $m_{1/2} = 300$ GeV, $A_0 = -300$ GeV, $\tan\beta = 6$, $\mu > 0$. Bulk region: relatively light sleptons enhance LSP annihilation.

SU4 $m_0 = 200$ GeV, $m_{1/2} = 160$ GeV, $A_0 = -400$ GeV, $\tan\beta = 10$, $\mu > 0$. Low mass point close to Tevatron bound.

SU6 $m_0 = 320$ GeV, $m_{1/2} = 375$ GeV, $A_0 = 0$, $\tan\beta = 50$, $\mu > 0$. Funnel region with $2M_{\tilde{\chi}_1^0} \approx M_A$. Since $\tan\beta \gg 1$, A is wide and τ decays dominate.

SU8.1 $m_0 = 210$ GeV, $m_{1/2} = 360$ GeV, $A_0 = 0$, $\tan\beta = 40$, $\mu > 0$. Variant of coannihilation region with $\tan\beta \gg 1$, so that only $M(\tilde{\tau}_1) - M(\tilde{\chi}_1^0)$ is small.

- For all these points, gluino mass < 1 TeV, and it’s 6-8x neutralino mass. For all points except SU2, squark and gluino masses are comparable, therefore they are strongly produced and decay giving hard jets, leptons and MET.