

Grand unification and enhanced quantum gravitational effects

Xavier Calmet

Center for Particle Physics and Phenomenology

Work done in collaboration with S. Hsu and D. Reeb (U. of Oregon)

Outline

- LEP data and Unification
- Running of the Planck Mass
- Impact of Quantum Gravity on Unification
- Conclusions

THE STANDARD MODEL

Model cries for unification!

orceful

Spices

A grand unification?

What can we learn from LEP data on unification?

standard answer: supersymmetry is needed to unify the couplings!

But this is not unique! E.g. Lavoura & Wolfenstein PRD 48, 264 (1993)

SO(10) with 210, 126, 10: one can lower the mass of some Higgses to get unification but not too much proton decay

Running of Newton's constant

• Consider GR with a scalar field

$$S = \int d^4x \sqrt{-g} \left(-\frac{1}{16\pi G} R + \frac{1}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi \right)$$

• Newton's constant gets renormalized by fluctuations of quantum fields

• Renormalization group equation:

$$\frac{1}{16\pi} \frac{1}{G(\mu)} = \frac{1}{16\pi} \left(\frac{1}{G(0)} - N \frac{\mu^2}{12\pi} \right)$$

Running of the Planck Mass

• With spin 0, spin 1/2 (Weyl) and spin 1 fields:

$$M(\mu)^2 = M(0)^2 - \frac{\mu^2}{12\pi} \left(N_0 + N_{1/2} - 4N_1 \right)$$

• Gravity becomes strong at

$$M(\mu_*) \sim \mu_*$$

• Some definitions:

$$\mu_* = M_{\rm Pl}/\eta$$
 $\eta = \sqrt{1 + \frac{N}{12\pi}}$ $N \equiv N_0 + N_{1/2} - 4N_1$

• In SUSY models:

$$N = 3N_C - 3N_V$$

How big can N be?

- Typical GUT model involves a lot of scalar fields to reproduce SM in the low energy regime.
- Also to get a decent fit to mass spectrum.
- Let us look at some concrete examples:
 - Minimal SUSY SU(5) (with 3 families + Higgses 24, 5, $\underline{5}$) has:

$$N = 165$$
 $\eta = 2.3$

- SUSY-SO(10)
 - Dutta, Mimura and Mohapatra (PRD 72, 075009, 2005)

126, **126**, **210** and **10** N = 1425 $\eta = 6.2$

• Parida and Cajee (Eur. Phys. J. C 44, 447, 2005)

10, 16, $\overline{16}$ and 45 N = 270 $\eta = 2.9$

E8 × E8 (Slansky (Phys. Rept 79, 1, 1981)
248 and 3875

Why does this matter?

• Let us look again at operators discussed already by Hill (1984); Shafi and Wetterich (1984); Hall and Sarid (1991).

$$\frac{c}{\hat{\mu}_*} \text{Tr}\left(G_{\mu\nu}G^{\mu\nu}H\right)$$

$$\hat{\mu}_* = \mu_* / \sqrt{8\pi} = \hat{M}_{\rm Pl} / \eta$$
 with $\hat{M}_{\rm Pl} = 2.43 \times 10^{18} \,{\rm GeV}$

- New effect: running of the Planck mass.
- *H*: Higgs field in the adjoint of GUT group.
- Let us look at a toy model to make our point: SUSY SU(5)

$$\langle H \rangle = M_X (2, 2, 2, -3, -3) / \sqrt{50 \pi \alpha_G}$$

• The kinetic terms of $SU(3) \times SU(2) \times U(1)$ are modified:

$$-\frac{1}{4} (1+\epsilon_1) F_{\mu\nu} F_{\mathrm{U}(1)}^{\mu\nu} - \frac{1}{2} (1+\epsilon_2) \operatorname{Tr} \left(F_{\mu\nu} F_{\mathrm{SU}(2)}^{\mu\nu} \right) \\ -\frac{1}{2} (1+\epsilon_3) \operatorname{Tr} \left(F_{\mu\nu} F_{\mathrm{SU}(3)}^{\mu\nu} \right)$$

• with:

$$\epsilon_1 = \frac{\epsilon_2}{3} = -\frac{\epsilon_3}{2} = \frac{\sqrt{2}}{5\sqrt{\pi}} \frac{c\eta}{\sqrt{\alpha_G}} \frac{M_X}{\hat{M}_{\rm Pl}}$$

• After field and coupling constants redefinitions

$$A^i_\mu \to \left(1 + \epsilon_i\right)^{1/2} A^i_\mu \qquad \qquad g_i \to \left(1 + \epsilon_i\right)^{-1/2} g_i$$

• One obtains the new unification condition:

$$\alpha_G = (1 + \epsilon_1) \,\alpha_1(M_X) = (1 + \epsilon_2) \,\alpha_2(M_X)$$
$$= (1 + \epsilon_3) \,\alpha_3(M_X) \,.$$

Usual solution: $\alpha_3(M_Z)=0.117$, $M_{SUSY}=1$ TeV

LEP does not favor supersymmetric unification!!!

Uncertainty due to new operator is bigger than two loop effects!!!

i	1	2	3
$\alpha_i^1(M_X)$	0.03815	0.03767	0.03814
$\alpha_i^2(M_X)$	0.03897	0.03899	0.03868
$\delta \alpha_i = \alpha_i^2 - \alpha_i^1$	8.2×10^{-4}	13.2×10^{-4}	5.4×10^{-4}
$\delta \alpha_i / \alpha_i^1$	+2.1%	+3.5%	+1.4%
$\epsilon_i(c\eta = -5)$	-0.0167	-0.0503	+0.0335
$\alpha_G(M_X)$	0.0389	0.0389	0.0389
$\alpha_{Gi} = \alpha_G/(1+\epsilon_i)$	0.0396	0.0410	0.0376
$\delta_i = \alpha_G - \alpha_{Gi}$	-6.6×10^{-4}	-20.6×10^{-4}	12.6×10^{-4}
δ_i / α_G	-1.7%	-5.3%	+3.2%

TABLE I: The upper half of the table shows shifts in the predictions for the values of the coupling constants at $M_X = 10^{16}$ GeV due to inclusion of two-loop running. These shifts are comparable in size or even smaller than the necessary splittings between the α_{Gi} due to (8) in the case $\eta = 5$, c = -1 (lower half).

What about SO(10) models?

• Breaking of gauge symmetry is affected by

 ξ_{A}^{ij} (45) ξ_{A}^{ijk} (120) ξ_{A}^{ijklm} (126) ξ_{A}^{ijkl} (210) ξ_{S}^{ij} (54)

- However contraction $Tr(G_{\mu\nu}G^{\mu\nu} 45)=0$ vanishes.
- But, $Tr(G_{\mu\nu}G^{\mu\nu} 54)$ or $Tr(G_{\mu\nu}G^{\mu\nu} 210)$ do not!
- Analysis similar to SU(5) case:

$$\epsilon_i \sim c\eta \alpha_G^{-1/2} M_X / \hat{M}_{\rm Pl}$$

Conclusions

- Quantum gravity spoils predictions done using low energy data.
- LEP does not favor SUSY unification.
- Extrapolation from low energy data is too naïve.
- Impossible to make any prediction without knowing the full details of the unification group and symmetry breaking pattern.
- Without observing proton decay it will not be possible to claim that SU(3)×SU(2)×U(1) unifies.
- To maintain calculability of a GUT model: avoid certain Higgses and keep number of fields as small as possible.
- Thanks for your attention.

Back up slides

Derivation of the renormalization group equation (see e.g. Larsen & Wilczek (1995))

• One loop effective action of a scalar field coupled to gravity:

$$e^{-W} = \int \mathcal{D}\phi \ e^{-\frac{1}{8\pi}\int \phi(-\Delta + m^2)\phi}$$
$$= [\det(-\Delta + m^2)]^{-\frac{1}{2}}.$$

• The hear kernel is defined as:

$$H(\tau) \equiv \text{Tr}e^{-\tau\Lambda} = \sum_{i} e^{-\tau\lambda_{i}}$$

where λ_i are the eigenvalues of $\Lambda = -\Delta + m^2$

• The integration over τ is divergent: introduce an ultra-violet cutoff ϵ^2 :

$$W = \frac{1}{2} \ln \det \Lambda = \frac{1}{2} \sum_{i} \ln \lambda_{i} = -\frac{1}{2} \int_{\epsilon^{2}}^{\infty} d\tau \frac{H(\tau)}{\tau}.$$

• One can define:

$$H(\tau) = \int dx \ G(x, x, \tau)$$

• Where the Green's function satisfies:

$$(\frac{\partial}{\partial \tau} - \Delta_x)G(x, x', \tau) = 0 ;$$

$$G(x, x', 0) = \delta(x - x')$$

• In flat space one would have:

$$G_0(x, x', \tau) = \left(\frac{1}{4\pi\tau}\right)^2 \exp\left(-\frac{1}{4\tau}(x - x')^2\right)$$

• Expansion for small curvature yields:

$$\begin{split} H(\tau) \; = \; \frac{1}{(4\pi\tau)^2} \Big(\int d^4x \sqrt{-g} \\ &+ \; \frac{\tau}{6} \int d^4x \sqrt{-g} \, R \; + \; \mathcal{O}(\tau^{\frac{3}{2}}) \Big) \end{split}$$

• One thus finds:

$$\frac{1}{G_{\rm ren}} = \frac{1}{G_{\rm bare}} + \frac{1}{12\pi\epsilon^2}$$

 This was old-fashion perturbation theory. Wilsonian approach: let us integrate out modes with lkl>μ and consider physics at energies below μ:

$$W = -\frac{1}{2} \int_{\epsilon^2}^{\mu^{-2}} d\tau \frac{H(\tau)}{\tau}$$

• And thus:

$$\frac{1}{G(\mu)} = \frac{1}{G(0)} - \frac{\mu^2}{12\pi}$$