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Abstract

We consider cosmological perturbations caused by modulated inflaton

velocity. During inflation, the inflaton is damped and the velocity is

determined by the parameters such as couplings or masses that depend on

the moduli. The number of e-foldings is different in different patches if

there are spatial fluctuations of such parameters. Based on this simple idea,

we consider “modulated inflation” in which the curvature perturbation is

generated by the fluctuation of the inflaton velocity.
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Let me first discuss common ideas for cosmological perturbations in terms of the δN
formalism. If H is a constant, δN is given by δN ≃ Hδt.

Traditional Scenario¶ ³
According to the traditional inflationary scenario, the curvature perturbation is
generated at the horizon crossing, which is indicated by the red line below (∼ δϕN)µ ´

In terms of the δN -formalism, the fluctuation of the time elapsed during inflation

δt ≃ δϕN/ϕ̇ is caused by the fluctuation of the start-line.
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Another idea for cosmological perturbation is

”At the end” Scenario¶ ³
The curvature perturbation is generated at the end. The fluctuation of the goal-line is
caused by the fluctuation of a light field (M), ϕe(M) → δϕe ≃ ϕ′

eδM.µ ´

δN ≃ Hδt is caused by the fluctuation of the goal-line, δϕe
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It is very natural to consider the fluctuation of the distance (δϕ) to

obtain δt that causes the fluctuation of the number of e-foldings δN .

However, we know that the time elapsed after horizon crossing

∼ |tN − te| depends not only on the distance ∼ |ϕN − ϕe| but also on the

inflaton velocity ϕ̇.

↓

If the inflaton velocity depends on a light field(moduli) M, the

fluctuation δM may lead to the fluctuation of the inflaton velocity

δϕ̇ ≃ (ϕ̇)′δM, which eventually causes δt and δN .

The effect would be obvious if
(1) there are many massless degrees of freedom that may affect the inflaton velocity;

(near ESP, there would be significant non-gaussinity from δϕ̇(Mi))
(2) the inflaton mass is slightly larger than the Hubble parameter and there is no
significant perturbation from δϕN . ＊ Inflation is fast-rolling but not oscillationary.
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Therefore, in this talk we focus on

Modulated inflaton velocity¶ ³
Spatial fluctuation of the time elapsed during inflation δt is caused by the fluctuation
of the inflaton velocity. ＊See the red dotted line.µ ´

δN ≃ Hδt is generated by the fluctuation of the inflaton velocity δϕ̇(Mi), even if

the start and the end-line is completely flat.
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Moreover, if the fundamental parameters are determined by the moduli

in the underlying (string) theory, it would be natural to think that;

Planck scale may depend on moduli; Mp(M)¶ ³
The Planck scale Mp may depend on moduli that may have fluctuations

during inflation. Thus, it is important to ask what is the consequence of

δMp that is caused by δM.µ ´
We can see that the perturbation related to δMp(M) is explained in terms

of δϕ̇.

Let us see more details of this scenario, considering some simple

examples.
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The first example is

Standard kinetic term and conventional interaction term in V (ϕ,M).

Basic formula¶ ³
The definition of the number of e-foldings for constant H is

N =
∫

Hdt =
∫

H
ϕ̇dϕ + ṀdM

ϕ̇2 + Ṁ2
. (1)

µ ´
If there is no bend in the trajectory(Ṁ ≃ 0), the perturbation related to

the inflaton velocity is expanded as

δN ≃ −
∫ ϕN

ϕe

H

ϕ̇2

(
δϕ̇ − ϕ̇A

)
dϕ, (2)

where we consider linear scalar perturbations of the metric,

ds2 = −(1 + 2A)dt2 + 2aBidxidt + a2 [(1 − 2ψ)δij + 2Eij] dxidxj. (3)
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From the conventional energy and momuntum constraints we find

ϕ̇
(

˙δϕ − ϕ̇A
)
− ϕ̈δϕ ≃ ϕ̇

(
˙δϕ − ϕ̇A

)
∝ k2

a2
, (4)

which suggests that the factor appearing in the delta-N formula decays

after horizon crossing. Therefore, e−2Ht factor must be included in the

calculation, even if the perturbation ϕ̇δϕ̇ itself is supposed to be a constant.

Of course, e−2Ht in the integral does not lead to an exponential

suppression after the integration. It is easy to see that there is no

exponential suppression for large N(∼ Ht);∫ te

0

δCHe−2Htdt ≃ 1
2
δC. (5)

The actual suppression factor is not significant for the modulated velocity.
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In fact,¶ ³
Correction from the terms proportional to k2/a2 has been disregarded in

previous studies, since k2/a2 is obviously small at a distance. However,

if they appear in the equation of Ṙ, these terms may yield significant

correction to R after integration, as we will see later in this talk.µ ´
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Next, we consider moduli-dependent kinetic term.

Inflaton kinetic term ∼ 1
2ω(M)gabϕ,aϕ,b

¶ ³
The number of e-foldings is

N =
∫

Hdt ≃
∫

H

ϕ̇
dϕ ≃

∫
3H2

Vϕ
ωdϕ. (6)

Again, we assume no bend in the trajectory.µ ´
δN that is related to the moduli perturbation (δM) is

δN (δM) ≃
∫

3H2

Vϕ
ω′δMdϕ ≃ ω′δM

ω

∫
3H2

Vϕ
ωdϕ ≃ ω′δM

ω
N (7)

What is important here is →
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Note¶ ³
Unlike the perturbation caused by the potential, the constraints from

the energy and momuntum does not yield k2

a2 factor for the perturbation

related to the kinetic term.µ ´
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Let us see what happens if the boundary perturbations are flat while

the modulated velocity is significant. We consider ↓

Fast-roll inflation with hybrid-type potential¶ ³
Inflaton may have large mass (mϕ ≃ O(1)H) due to the “η-problem”.

Then δϕ may either decay or cannot cross the horizon during inflation.

Non-oscillationary (fast-roll) inflation is possible if the friction is

significant.µ ´
Hybrid inflation has the effective potential

V (ϕ, σ) = λ
(
σ2 − v2

)2
+

1
2
g2ϕ2σ2 + V (ϕ), (8)

where ϕ is the inflaton and σ is the trigger field. Here the end of inflation

expansion occurs at

ϕe =

√
λv

g
, (9)
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and the number of e-foldings is given by

N =
1
Fϕ

log
ϕN

ϕe
, (10)

where F ≡ 3
2

(
1 −

√
1 − 4m2/9H2

)
. For m ≃ H, modulated mass leads

to the fluctuation (k2/a2 is considered)

δNM ∝ m′δM, (11)

where m′ is the derivative of m with respect to M. For example, for

m2(M) ≡ m2
0 [1 + β log(M/M∗)] , (12)

we find δN given by

δNM ≃ β

(
δM
M

)
. (13)
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Since the mass of M must be less than HI during inflation, we find the

condition

m2
M ≃ βm2

0

(
ϕN

M

)2

< H2
I . (14)

The non-gaussinity parameter is

fnl = −5
6

N ′′

(N ′)2
∝ 1

β
, (15)

which can be large and may take either sign.
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Next, we consider the case in which modulated velocity adds significant

non-gaussinity to the standard perturbation.

Our question is¶ ³
“Is it possible for the modulated velocity to add significant non-gaussinity

to the standard inflationary perturbation after horizon crossing?”µ ´
Our answer is “Yes” →
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Non-gaussianity at ESP¶ ³
We consider a simple mechanism to “add” large non-gaussianity to the

standard inflationary perturbation. We consider hybrid inflation with

standard(∼ g2ϕ2M2) interaction. During inflation, hybrid inflation has

the effective potential

V (ϕ,M) = V0 +
1
2
m2

ϕϕ2 + g2(ϕ − ϕESP )2M2
i . (16)

µ ´
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The perturbation of the inflaton velocity caused by the number of “n”

massless excitation is

δϕ̇ ≃ ng2(ϕ − ϕESP )δM2

3H
≃ ng2ϕ̇ ×

(
ϕ − ϕESP

ϕ

)
δM2

m2
ϕ

(17)

where the first order perturbation vanishes because < M >0= 0. The

second order perturbation at ESP adds significant non-gaussianity

f̂NL ≃ ηϕ × ηM × n

(
ϕ

ϕ − ϕESP

)
. (18)

which is the so-called “uncorrelated non-gaussianity”. The usual fNL is

fNL ∼ (f̂NL/1300)3. → We can “add” significant non-gaussianity to the

standard perturbation.
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Finally, we consider modulated Planck scale in terms of the delta-N

formalism.

δMp from Mp(M)¶ ³
We consider a light scalar field M̂ coupled to gravity. The theory can

be given by

S =
∫

d4x
√
−g

[
f(M̂)R − g(M̂)

(
∇M̂

)2

− 1
2

(∇ϕ)2 − V (ϕ)
]

.

(19)µ ´
Here the Planck scale is replaced by a function of the moduli.
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Considering (for simplicity) Jordan-Brans-Dicke theory, the action in the

Einstein frame is given by the action with the moduli-dependent kinetic

term ∼ 1
2ω(M)gabϕ,aϕ,b, where

ω(M) = exp (−βκM) (20)

and the potential

V = ω2W (ϕ). (21)

Note that there are both sources, from the potential and the kinetic term.

The perturbation caused by the potential has the factor k2/a2, while

the one from the kinetic term does not have such factor.

The story in the Einstein frame is completely the same as the one that

has been discussed in this talk.
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Summary

We considered cosmological perturbations caused by

modulated inflaton velocity.

Important results are;

1. A small deviation from the standard perturbation may be explained by

the modulated velocity.

2. The curvature perturbation can be generated during inflation even if the

boundaries are completely flat.

3. It is possible to add significant non-gaussianity after horizon crossing.
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