Study of VV-scattering processes as a probe of electroweak symmetry breaking

Pietro Govoni, on behalf of the CMS collaboration Università and INFN Milano-Bicocca

The 16th International Conference on Supersymmetry and the Unification of Fundamental Interactions

Why VV scattering

- In the symmetry breaking mechanism the Higgs gives mass to W and Z (*i.e.* their **longitudinal polarization**)
- VV scattering is the key process to probe EWSB
 - If the <u>Higgs exists a resonance will be observed</u> in the M(VV) spectrum in correspondence of M(H)
 - Without the Higgs the V_L's interact strongly at high energy and the <u>V_LV_L cross section violates the unitarity</u> at M(VV) ~ 1 TeV
 →deviation from SM prediction
- The large M(VV) region gives indications on the M(H) range
- Whether H exists or not V_LV_L should be studied in detail to verify if weak or strong interactions occur

Analyzed processes

- $qq \rightarrow qqVV$ has been analyzed with different final states
 - $qqVW (qqqq\mu\nu/qqqqe\nu)$
 - $qqVZ (qqqq\mu\mu/qqqqee)$
 - ____qqZZ (qqμμμμ/qqeeee)
 - $qqZW (qq\mu\mu\mu\nu)$
 - $qqW^{\pm}W^{\pm}(qq\mu^{\pm}\nu\mu^{\pm}\nu)$

- highest BR no neutrinos!
 - low BR, but clean
- interesting for no-Higgs
- interesting for no-Higgs

- All processes have
 - High p_T lepton(s) \Rightarrow Trigger
 - 2 "tag" jets in the fwd/bkd region to identify a 6-fermion process

Two different scenarios have been considered: **Higgs** (M_H =500 GeV) and **no-Higgs** (or M_H = ∞)

N. Amapane *et al.* Study of VV-scattering processes as a probe of electroweak symmetry breaking, CMS AN-2007/005

MC Generator for Signal

Phantom* is a full six fermions final state generator

- exact matrix elements, no approximation
- generates all EW processes with six fermions in the final state at $\alpha_{\rm EW}^6$:
 - VV-scattering + irreducible background (top-top, single top, non resonant, three bosons from TGC & QGC ...)

*Phantom: A.Ballestrero, G.Bevilacqua, A.Belhouari, E.Maina (Torino Theory Dep) It generates all processes with 6 fermions in the final state at $\alpha_{EW}^6 + \alpha_{EW}^4 x \alpha_{QCD}^2$.

Some Phantom diagrams

Signal definition

- The **signal** has to be **defined** "a posteriori" with a series of kinematical cuts:
 - 2 on-shell bosons (±10 GeV)
 - No third boson
 - No single top or top-top produced
 - Always selecting the correct flavors combinations
- The **irreducible background** is defined with the same kinematics cuts.

Phantom cross sections

Two scenarios

- M(H) = 500 GeV
- no-Higgs or $M(H) = \infty$ to describe the no-Higgs case

			$qqqq\mu u/e u$				$qqqq\mu\mu/ee$					
	no		Higgs 500 C		GeV no-H		liggs 500		GeV			
			perc.	σ (pb)	perc.	σ (pb)	perc.	σ (pb)	perc.]		
	total	0.689	100%	0.718	100%	0.0305	100%	0.0350	100%			
	signal	0.158	23%	0.184	26%	0.0125	41%	0.0165	47%			
	top	0.495	72%	0.494	69%	0.0137	45%	0.0137	39%			
	non resonant	t 0.020	3%	0.023	3%	0.0030	10%	0.0035	10%			
	three bosons	0.016	2%	0.017	2%	0.0012	4%	0.0014	4%			
		qqµµµµ	u/eeee		-	$qq\mu$	μμν			$qq\mu^{\pm}$	$\nu \mu^{\pm} \nu$	
	no-H	<i>qqµµµµ</i> iggs	u/eeee 500 (GeV	no-H	qqµ liggs	μμν 500	GeV	no-H	$qq\mu^{\pm}$ liggs	$\nu\mu^{\pm}\nu$ 500	GeV
	no-H σ (fb)	qqμμμμ iggs perc.	u/eeee 500 C σ (fb)	GeV perc.	no-H σ (fb)	qqµ liggs perc.	μμν 500 σ (fb)	GeV perc.	no-H σ (fb)	$qq\mu^{\pm}$ liggs perc.	νμ [±] ν 500 σ (fb)	GeV perc.
total	no-H σ (fb) 0.180	<i>qqμμμμ</i> iggs perc. 100%	u/eeee 500 C σ (fb) 0.310	GeV perc. 100%	no-H σ (fb) 4.182	<i>qqµ</i> liggs perc. 100%	μμν 500 σ (fb) 4.152	GeV perc. 100%	no-H σ (fb) 4.29	$qq\mu^{\pm}$ liggs perc. 100%	νμ [±] ν 500 σ (fb) 4.16	GeV perc. 100%
total signal	no-H σ (fb) 0.180 0.120	<i>qqμμμμ</i> iggs perc. 100% 66.4%	u/eeee 500 C σ (fb) 0.310 0.229	GeV perc. 100% 74.1%	no-H σ (fb) 4.182 1.317	qqμ liggs perc. 100% 31.5%	μμν 500 σ (fb) 4.152 1.281	GeV perc. 100% 30.8%	no-H σ (fb) 4.29 3.26	$qq\mu^{\pm}$ liggs perc. 100% 76%	$ \frac{\nu\mu^{\pm}\nu}{500} $ $ \frac{\sigma \text{ (fb)}}{4.16} $ $ 3.11 $	GeV perc. 100% 75%
total signal top	no-H σ (fb) 0.180 0.120 0	<i>qqμμμμ</i> iggs perc. 100% 66.4% 0%	σ (fb) 0.310 0.229 0	GeV perc. 100% 74.1% 0%	no-H σ (fb) 4.182 1.317 1.817	qqμ liggs perc. 100% 31.5% 43.5%	$ \begin{array}{r} \mu\mu\nu \\ $	GeV perc. 100% 30.8% 44.01%	no-H σ (fb) 4.29 3.26 0	qqμ [±] liggs perc. 100% 76% 0%	$ \frac{\nu \mu^{\pm} \nu}{500} \frac{\sigma \text{ (fb)}}{4.16} 3.11 0 $	GeV perc. 100% 75% 0%
total signal top non resona	no-H σ (fb) 0.180 0.120 0 nt 0.0364	<u>qqμμμ</u> iggs perc. 100% 66.4% 0% 20.2%	σ (fb) 0.310 0.229 0 0.0533	GeV perc. 100% 74.1% 0% 17.2%	no-H σ (fb) 4.182 1.317 1.817 0.673	qqμ liggs perc. 100% 31.5% 43.5% 16.1%	$ \frac{\mu\mu\nu}{500} \\ \frac{\sigma \text{ (fb)}}{4.152} \\ 1.281 \\ 1.828 \\ 0.651 $	GeV perc. 100% 30.8% 44.01% 15.7%	no-H σ (fb) 4.29 3.26 0 0.47	$qq\mu^{\pm}$ liggs perc. 100% 76% 0% 11%		GeV perc. 100% 75% 0% 11%

 \Rightarrow Cross sections for the analyzed final states vary of three orders of magnitude (0.1 \rightarrow 100 fb)

q from V decay & q_{tag} topology

Main Backgrounds

- **V+jets** (critical for semileptonic) ($\sigma = 4 \div 2500 \text{ pb}$)
- **VV+jets** (critical for totally leptonic) ($\sigma = 0.2 \div 60 \text{ pb}$)
- **tt+jets** ($\sigma = 60 \div 200 \text{ pb}$)

The official CMS production (made with ALPGEN) was used

Selection cuts

• μ: p _T > 20 GeV	e: E/p>0.8 , 1/E-1/p <0.01 , H/E <0.02, Track Iso.					
•W \rightarrow µv,ev -Fix p _z with (p _µ +p _v) ² = -MET > 30 GeV; MET •Z \rightarrow µµ,ee -p ⁺ _z *p ⁻ _z > -2000 GeV ² -choose pair with larg -81 < M _z < 101 GeV -p _T ^z >100 GeV	M_{W}^{2} $(-p_{T}>30 \text{ GeV})$ $(-p_{T}>30 \text{ GeV}, E_{j} > 100 \text{ GeV})$ $(-\eta) > 1 \text{ for at least one tag jet}$ $(-p_{i}) > 1 \text{ for at least one tag jet}$					

Final cuts:

-M_{VWjj} > 1000 GeV -b-tagging Some additional small difference from one channel to the other are present

Invariant Mass Resolution

Important to:

- discriminate signal from background
- define the energy scale at which Symmetry breaks

	$qqqq\mu\nu$	$qqqqe\nu$	$qqqq\mu\mu$	qqqqee	$qq\mu\mu\mu\mu$	qqeeee	$qq\mu\mu\mu u$
$Z \rightarrow ll$	—		1.5%	1.5%	1.5%	2.0%	2.1%
$W/Z \rightarrow jj$	27%	20.5%	20%	25%	_	_	_
$VV \rightarrow 4f$	22%	19.0%	9.5%	9.5%	1.1%	1.5%	9.4%

 $M_{\rm V}$ and $M_{\rm VV}$ resolution for the various final states

Quite **poor** V \rightarrow jj resolution: <u>This results in a lower efficiency and S/ \sqrt{B} .</u>

Efficiency

Signal and Background

Signal and Background

Results for 60 fb⁻¹

	$q q q q \mu \nu$	$qqqqe\nu$	$qqqq\mu\mu$	qqqqee	qqµµµµ	qqeeee	$qq\mu\mu\mu\nu$	$qq\mu^{\pm}\nu\mu^{\pm}\nu$
signal	111	26	5	10	0.16	0.2	2.7	8.3
W + n jets	5570	166	-	-	-	-	-	0
Z + n jets	499	-	205	580	-	-	0	-
$\overline{t}t$	446	19	0	0	-	-	0	664
ZZ + n jets	-	-	10	17	0.3	0.2	0.02	110
ZW + n jets	-	-	139	93	-	-	2.21	20
WW + n jets	3094	-	-	-	-	-	-	37
irreducible backgrounds	47	3	1	1	0.009	0.001	0.09	1.3
backgrounds	9656	187	355	691	0.31	0.201	2.3	832
significance	1.13	1.87	0.28	0.38	0.27	0.39	1.51	0.29

no Higgs case

	$qqqq\mu\nu$	$qqqqe\nu$	$qqqq\mu\mu$	qqqqee	$qq\mu\mu\mu\mu$	qqeeee
signal	703	309	86	100	3.1	3.5
W + n jets	34840	1383	-	-	-	-
Z + n jets	3094	-	3798	4660	-	-
$\bar{t}t$	5976	609	30	14	0	-
ZZ + n jets	-	-	125	184	2.6	2.9
ZW + n jets	-	-	781	615	0	-
WW + n jets	16133	-	-	-	0	-
irreducible backgrounds	220	23	20	20	0.036	0.04
backgrounds	60263	2015	4754	5493	2.6	2.94
significance	2.86	6.72	1.24	1.34	1.66	1.76

Two different approaches for $4q\mu\nu$ and $4qe\nu$: -high efficiency to study the high M_{VV} region -high significance for a discovery

Higgs with m_H =500 GeV

The High Mass region

The cross section $\sigma(qq \rightarrow qqVV)$ and the V polarization depends on the presence or not of the Higgs:

 V_T is independent with respect to the Higgs (~NO coupling)

 V_L couples to Higgs \Rightarrow explodes^{*} at high masses if the Higgs does not exist

- If the <u>Higgs exists</u>, V_LV_L dominates under the peak, while at high masses (M(VV) > 1TeV) V_TV_T dominates
- If the <u>Higgs does not exist</u> V_L and V_T are of the same order at M > 1TeV

* Violation of unitarity not strongly felt at LHC because $\mathsf{E}_{\rm cm}$ is still too low and PDFs rapidly decrease

Pietro Govoni - SUSY08

Polarization

PROCESS $ud \to udW^+W^- \to udc\bar{s}\mu\bar{\nu}_{\mu}$

 $\begin{array}{ll} 1 < \eta(d) < 5.5 & -1 > \eta(u) > -5.5 \\ E(u,d,c,s,\mu) > 20 \ GeV & P_t(u,d,c,s,\mu) > 10 \ GeV \\ 70 < M(sc, \ \mu\nu) < 90 \end{array}$

The V_L 's are coupled to the Higgs and they are the ones sensitive to the EWSB.

The behavior of the LL cross section can give <u>information on the scale at</u> <u>which the symmetry breaks</u>.

At large M(VV) the TT cross section is of the same order as the LL and σ_{tot} (MH=500) $\sim \sigma_{tot}$ (noHiggs)

E. Accomando *et al.* Boson-boson scattering and Higgs production at the LHC from a six fermion point of view: four jets + I_V processes at $O(\alpha^6_{em})$

The ratio no-Higgs/Higgs at parton level

No-Higgs/Higgs in the detector

• At reconstructed level, additional cuts have been added to enhance the difference between the Higgs and the no-Higgs scenarios

 $\Rightarrow |\eta_V| < 2, |\eta_i - \eta_V| > 0.7$

• The ratio $\frac{\int_{M_{cut}}^{\infty} dM_{VV} \frac{d\sigma_{noHiggs}}{dM_{VV}}}{\int_{M_{cut}}^{\infty} dM_{VV} \frac{d\sigma_{M_{H}iggs}}{dM_{VV}}}$

has been plotted as a function of M(VV)

Ratio no-Higgs/Higgs

Summary

- VV-scattering holds the key to understand the Electroweak Symmetry Breaking
- this analysis shows a way to probe the EWSB in a model independent way
- at LHC, in the high luminosity phase, encouraging results have been found