Singlet Fermionic Dark Matter

Shin, Seodong

Korea Advanced Institute of Science and Technology Guseong-dong 373-1, Yuseong-gu Daejeon Korea

SUSY08 Korea Parallel session 5, 20th June, 2008

JHEP 0805:100, 2008 Collaboration with Y.G. Kim and K.Y. Lee

・ロン ・四シ ・ヨン ・ヨン 三田

Introduction

2 Several toy models of the singlet dark matters

Singlet Fermionic Dark Matter

- Model building
- Implication in cosmology and collider physics
- Direct detection

Outline

Introduction

Several toy models of the singlet dark matters

Singlet Fermionic Dark Matter

- Model building
- Implication in cosmology and collider physics
- Direct detection

Dark Matter in our universe

Rotation curves of the galaxy

Different from the observation!! \rightarrow *There is non-luminous matter.*

Dark Matter in our universe

Rotation curves of the galaxy

Different from the observation!! \rightarrow *There is non-luminous matter.*

Condition for the dark matters

- Stable (produced after the Big-Bang and still present today)
- Neutral (no electric interaction and no binding to the nuclei)
- $\Omega_{CDM}h^2 \sim 0.1$ (0.085 < $\Omega_{CDM}h^2$ < 0.119) WMAP data

C.L. Bennett et al., Astrophys. J. Suppl. Ser. 148, 1 (2003)

Shin, Seodong (KAIST)

Singlet Fermionic Dark Matter

Outline

Introduction

2 Several toy models of the singlet dark matters

Singlet Fermionic Dark Matter

- Model building
- Implication in cosmology and collider physics
- Direct detection

Several toy models of the singlet dark matters

Minimal extension of the Standard Model to get the candidates of DM

Several toy models of the singlet dark matters

Minimal extension of the Standard Model to get the candidates of DM

Singlet scalar DM

C.P. Burgees, M. Pospelov, T. Veldhuis (minimal scalar model) Nucl. Phys. **B 619**, 709-728 (2001)

DM : SM singlet real scalar field with Z_2 parity

Interaction with the ordinary fields only through Higgs

- Different Higgs phenomenology from that in SM

Several toy models of the singlet dark matters

Minimal extension of the Standard Model to get the candidates of DM

Singlet scalar DM

C.P. Burgees, M. Pospelov, T. Veldhuis (minimal scalar model) Nucl. Phys. **B 619**, 709-728 (2001)

DM : SM singlet real scalar field with Z_2 parity

Interaction with the ordinary fields only through Higgs

- Different Higgs phenomenology from that in SM

Fermionic DM

Y.G. Kim and K.Y. Lee (minimal fermionic model)

Physical Review **D 75**, 115012 (2007)

DM : SM singlet Dirac fermion field (U(1) to avoid the mixing)

Interaction with the ordinary fields only through Higgs

Non-renormalizable interactions of the singlet fermion and SM Higgs

Outline

Introduction

Several toy models of the singlet dark matters

Singlet Fermionic Dark Matter

- Model building
- Implication in cosmology and collider physics
- Direct detection

Model building

Our model : Minimal model with the renormalizable interactions

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{hid} + \mathcal{L}_{int}$$

• Hidden sector : real singlet scalar, singlet Dirac fermion

$$\begin{aligned} \mathcal{L}_{hid} &= \mathcal{L}_S + \mathcal{L}_{\psi} - g_S \bar{\psi} \psi S \\ \bullet \quad \mathcal{L}_S &= \frac{1}{2} \left(\partial_{\mu} S \right) \left(\partial^{\mu} S \right) - \frac{m_0^2}{2} S^2 - \frac{\lambda_3}{3!} S^3 - \frac{\lambda_4}{4!} S^4 \\ \bullet \quad \mathcal{L}_{\psi} &= \bar{\psi} \left(i\partial - m_{\psi_0} \right) \psi \end{aligned}$$

Interaction of the hidden sector and SM sector

$$\mathcal{L}_{int} = -\lambda_1 H^{\dagger} H S - \lambda_2 H^{\dagger} H S^2$$

- Singlet fermion is sequestered from SM matters. (U(1) of ψ)
- Singlet scalar couples to the SM sector only through the Higgs.
- Mixing between SM Higgs and the singlet scalar (two Higgs) Say h_1 : SM higgs-like , h_2 : singlet-like

Model building

Our model : Minimal model with the renormalizable interactions

- The interaction of the hidden fermion and the SM sector are suppressed by the mass of *h*₁ and *h*₂ & mixing angle.
 Singlet fermion is naturally a WIMP → DM
- Different Higgs phenomenology : less production, invisible decay
- 8 undetermined parameters : m_{ψ_0} , g_S , $\bar{\lambda}_0$, λ_1 , λ_2 , λ_3 , λ_4 , x_0
 - ⇒ determine Higgs boson masses (m_{h_1}, m_{h_2}) , mixing angle (θ) , triple and quartic self couplings of Higgs bosons

Implication in cosmology and collider physics

Thermal relic density $\Omega_{\psi} h^2 \approx \frac{(1.07 \times 10^9) x_F}{\sqrt{g_* M_{pl} (GeV) < \sigma_{ann.} v_{rel} >}}$ constrained by WMAP

- $\bar{\psi}\psi \rightarrow SM$ particles via Higgs mediated *s*-channel processes
- $\bar{\psi}\psi \rightarrow$ Higgs bosons via *s*, *t*, *u*-channels

Implication in cosmology and collider physics

Thermal relic density $\Omega_{\psi} h^2 \approx \frac{(1.07 \times 10^9) x_F}{\sqrt{g_* M_{pl}(GeV) < \sigma_{ann.} v_{rel} >}}$ constrained by WMAP $\bar{\psi}\psi \rightarrow$ SM particles via Higgs mediated *s*-channel processes $\bar{\psi}\psi \rightarrow$ Higgs bosons via *s*, *t*, *u*-channels

Singlet Fermionic Dark Matter Implication in cosmology and collider physics

Implication in cosmology and collider physics

Figure: $m_{h_1} = 120 \text{ GeV} (\pm 1\%)$ $m_{h_2} = 500 \text{ GeV} (\pm 12\%)$

Figure: $m_{h_1} = 120 \text{ GeV} (\pm 4\%)$ $m_{h_2} = 100 \text{ GeV} (\pm 1\%)$

Direct detection

Direct detection

Figure: $m_{h_1} = 120 \ GeV (\pm 1\%)$ $m_{h_2} = 500 \ GeV (\pm 12\%)$ Figure: $m_{h_1} = 120 \text{ GeV} (\pm 4\%)$ $m_{h_2} = 100 \text{ GeV} (\pm 1\%)$

Outline

Introduction

Several toy models of the singlet dark matters

Singlet Fermionic Dark Matter

- Model building
- Implication in cosmology and collider physics
- Direct detection

Conclusions

A (1) > A (2)

• Minimal model with the renormalizable interactions

- Minimal model with the renormalizable interactions
- A minimal hidden sector with a real scalar and a Dirac fermion
 ⇒ Singlet fermion can be CDM.

- Minimal model with the renormalizable interactions
- A minimal hidden sector with a real scalar and a Dirac fermion
 ⇒ Singlet fermion can be CDM.
- Higgs phenomenology : less production, invisible decay

- Minimal model with the renormalizable interactions
- A minimal hidden sector with a real scalar and a Dirac fermion
 ⇒ Singlet fermion can be CDM.
- Higgs phenomenology : less production, invisible decay
- Our DM explains the observed relic abundance.

- Minimal model with the renormalizable interactions
- A minimal hidden sector with a real scalar and a Dirac fermion
 ⇒ Singlet fermion can be CDM.
- Higgs phenomenology : less production, invisible decay
- Our DM explains the observed relic abundance.
- It is possible for our DM to be consistent with the experiments by LEP2 and avoid the currnet experimental bounds so it can be investigated in near future.

- Minimal model with the renormalizable interactions
- A minimal hidden sector with a real scalar and a Dirac fermion
 ⇒ Singlet fermion can be CDM.
- Higgs phenomenology : less production, invisible decay
- Our DM explains the observed relic abundance.
- It is possible for our DM to be consistent with the experiments by LEP2 and avoid the currnet experimental bounds so it can be investigated in near future.

Thank you!!

Definitions and Relations of the parameters

- SM Higgs potential term $-(-\mu^2 H^{\dagger} H + \bar{\lambda}_0 (H^{\dagger} H)^2)$
- $<S>=x_0 < H_0>=v_0/\sqrt{2} S = x_0 + s H_0 = (v_0 + h)/\sqrt{2}$
- Extremum condition

$$\mu^2 = \bar{\lambda}_0 v_0^2 + (\lambda_1 + \lambda_2 x_0) x_0 \; ; \; m_0^2 = -\frac{\lambda_3}{2} x_0 - \frac{\lambda_4}{6} x_0^2 - \frac{\lambda_1 v_0^2}{2x_0} - \lambda_2 v_0^2$$

• Mass matrix (V: potential of SM Higgs and the singlet fields)

$$\mu_h^2 \equiv \left. \frac{\partial^2 V}{\partial h^2} \right|_{h=s=0} = 2\bar{\lambda}_0 v_0^2$$

$$\mu_s^2 \equiv \left. \frac{\partial^2 V}{\partial s^2} \right|_{h=s=0} = \left. \frac{\lambda_3}{2} x_0 + \frac{\lambda_4}{3} x_0^2 - \frac{\lambda_1 v_0^2}{2x_0} \right.$$

$$\mu_{hs}^2 \equiv \left. \frac{\partial^2 V}{\partial h \partial s} \right|_{h=s=0} = (\lambda_1 + 2\lambda_2 x_0) v_0$$

Parameter choice

- Fix Higgs masses m_{h_1} and m_{h_2} within some ranges.
- Allow θ , triple and quartic Higgs self-couplings vary freely.
- Our parameter sets should satisfy several physical conditions
 - Potential is bounded below.
 - EW symmetry breaking is viable.
 - All couplings keep the perturbativity.

 $m_{h_1} = 120 \ GeV (\pm 1\%)$ $m_{h_2} = 500 \ GeV (\pm 12\%)$

We have very large invisible branching ratios when $m_{\psi} \lesssim m_{h_1}/2$

Mixing parameters

• Mass eigenstate

$$h_1 = \sin\theta s + \cos\theta h$$
; $h_2 = \cos\theta s - \sin\theta h$

• Mixing angle

$$\tan\theta = \frac{y}{1+\sqrt{1+y^2}}, \quad \text{where } y \equiv \frac{2\mu_{hs}^2}{\mu_h^2 - \mu_s^2}$$

• Mass eigenvalues

$$m_{1,2}^2 = \frac{\mu_h^2 + \mu_s^2}{2} \pm \frac{\mu_h^2 - \mu_s^2}{2} \sqrt{1 + y^2}$$
$$\cos\theta > \frac{1}{\sqrt{2}} \text{ if the definition of } \tan\theta \text{ is fixed}.$$

Elastic cross section

Cross section

$$\sigma(\psi p \to \psi p) \approx \frac{4}{\pi} m_p^4 \left[\frac{0.35 g_s \sin \theta \cos \theta}{v_0} \left(\frac{1}{m_{h_1}^2} - \frac{1}{m_{h_2}^2} \right) \right]^2$$

Shin, Seodong (KAIST)

EW Precision Observation : The promising channel to produce a neutral Higgs boson at LEP is the Higgs-strahlung process $e^-e^+ \rightarrow Zh$

$$\xi_i^2 = \left(\frac{g_{h_i ZZ}}{g_{HZZ}^{SM}}\right)^2 \frac{\Gamma_{h_i}^{SM}}{\Gamma_{h_i}^{SM} + \Gamma(h_i \to \bar{\psi}\psi)}$$

Assuming the non-standard models, the lower bound on the Higgs mass is represented by the upper bound of ξ_i^2 , which is shown \Rightarrow

We impose $\xi^2 < 0.1$ as a conservative bound for $m_{h_i} = 90$ GeV and $\xi^2 < 0.3$ for $m_{h_i} = 100$ GeV

