Lightest U-parity Particle (LUP) dark matter

Hye-Sung Lee
University of Florida

HL, K. Matchev, T. Wang [0709.0763]; T. Hur, HL, S. Nasri [0710.2653];
HL, C. Luhn, K. Matchev [0712.3505]; HL [0802.0506].

SUSY 2008
Lightest \mathcal{U}-parity Particle (LUP) dark matter

in the \mathcal{R}-parity violating SUSY model

Hye-Sung Lee
University of Florida

HL, K. Matchev, T. Wang [0709.0763]; T. Hur, HL, S. Nasri [0710.2653];
HL, C. Luhn, K. Matchev [0712.3505]; HL [0802.0506].

SUSY 2008
Outline

• Companion symmetry of SUSY
 - R-parity
 - TeV scale $U(1)'$ gauge symmetry

• R-parity violating, $U(1)'$-extended SUSY model
 - Proton stability
 - Dark matter candidate
Lightest U-parity Particle (LUP) dark matter

Companion symmetry of SUSY
SUSY with R-parity

$$W_{R^p} = \mu H_u H_d$$

$$+ y_E H_d L E^c + y_D H_d Q D^c + y_U H_u Q U^c$$

$$+ (\lambda L L E^c + \lambda' L Q D^c + \mu' L H_u + \lambda'' U^c D^c D^c)$$

$$+ \frac{\eta_1}{M} Q Q Q Q L + \frac{\eta_2}{M} U^c U^c D^c E^c + \cdots$$

1. **μ-problem**: $\mu \sim \mathcal{O}(\text{EW})$ to avoid fine-tuning in the EWSB.
 (Kim, Nilles [1984])

2. **over-constraining of the R-parity**: All renormalizable \mathcal{L} violating and \mathcal{B} violating terms are (unnecessarily) forbidden.

3. **under-constraining of the R-parity**: Dimension 5 \mathcal{L}&\mathcal{B} violating terms still mediate too fast proton decay. (Weinberg [1982])
Lightest U-parity Particle (LUP) dark matter

Fast proton decay

$\begin{align*}
\begin{array}{c}
\text{[Dim 4 L violation \& Dim 4 B violation]} \\
R\text{-parity violating terms}
\end{array}
\end{align*}$

$\begin{align*}
\begin{array}{c}
\text{[Dim 5 B\&L violation]} \\
R\text{-parity conserving terms}
\end{array}
\end{align*}$
Look for an additional or alternative explanation (symmetry).

→ We will consider a TeV scale Abelian gauge symmetry, $U(1)'$.

Lightest U-parity Particle (LUP) dark matter
Lightest U-parity Particle (LUP) dark matter

TeV scale $U(1)'$ gauge symmetry

Natural scale of $U(1)'$ in SUSY models is TeV (linked to sfermions scales).

→ provides a natural solution to the μ-problem.

Two conditions to “**solve the μ-problem**”. $(z[F]: U(1)'$ charge of $F')$

- $\mu H_u H_d$: forbidden $\quad z[H_u] + z[H_d] \neq 0$
- $h S H_u H_d$: allowed $\quad z[S] + z[H_u] + z[H_d] = 0$

S is a Higgs singlet that breaks the $U(1)'$ spontaneously.

$\mu_{\text{eff}} = h \langle S \rangle \sim \mathcal{O}(\text{EW/TeV})$
Goal

Construct a stand-alone R_p violating TeV scale SUSY model without

1. μ-problem: $U(1)'$

2. proton decay problem

3. dark matter problem (non-LSP dark matter)

“R-parity violating $U(1)'$ model” as an alternative to the usual “R-parity conserving model”.

Use residual discrete symmetry of the $U(1)'$ to address the issues.
Conditions to have $U(1) \rightarrow Z_N$

$U(1)$ have a residual discrete symmetry Z_N if their charges satisfy (after normalization to integers):

- $z[S] = N$
- $z[F_i] = q[F_i] + n_i N$

($z[F_i]$: $U(1)$ charge, $q[F_i]$: Z_N charge) for each field F_i.
Lightest U-parity Particle (LUP) dark matter

Discrete symmetry compatible with MSSM sector

Most general Z_N of the MSSM sector (Ibanez, Ross [1992]) is

$$Z_N : B_N^b L_N^\ell$$

with family-universal cyclic symmetries ($\Phi_i \rightarrow e^{2\pi i \frac{q_i}{N}} \Phi_i$)

$$B_N = e^{2\pi i \frac{q_B}{N}}, \quad L_N = e^{2\pi i \frac{q_L}{N}}.$$
Residual discrete symmetry of the RPV $U(1)'$ model

: Proton stability without R-parity

HL, Luhn, Matchev [arXiv:0712.3505]
Discrete symmetries in presence of exotics

- There may be TeV scale exotic fields required to cancel chiral anomaly.
- The MSSM discrete symmetries still hold among the MSSM fields.

For a physics process which has only MSSM fields in its effective operators (such as proton decay), we can still discuss with Z_{N}^{MSSM}.

\[
\text{operator[p-decay]} = \left(\frac{1}{M} \right)^{m} \left[F_{1} F_{2} F_{3} F_{4} F_{5} \cdots \right]
\]

MSSM fields only
Discrete symmetry in the \mathcal{L} violating case

From the superpotential terms and $[SU(2)_L]^2-U(1)'$ anomaly condition, general $U(1)'$ charges for the MSSM sector in the \mathcal{L} violating case:

$$
\begin{pmatrix}
 z[Q] \\
 z[U^c] \\
 z[D^c] \\
 z[L] \\
 z[N^c] \\
 z[E^c] \\
 z[H_d] \\
 z[H_u] \\
 z[S]
\end{pmatrix}
= \alpha' \begin{pmatrix}
 1 \\
 -4 \\
 2 \\
 -3 \\
 0 \\
 6 \\
 -3 \\
 3 \\
 0
\end{pmatrix}
+ \beta' \begin{pmatrix}
 0 \\
 3(1 + n) + 1 \\
 -3n - 1 \\
 1 \\
 3(1 - a + n) \\
 -3n - 2 \\
 3n + 1 \\
 -3(1 + n) - 1 \\
 3
\end{pmatrix}
\rightarrow
\begin{pmatrix}
 q[Q] \\
 q[U^c] \\
 q[D^c] \\
 q[L] \\
 q[N^c] \\
 q[E^c] \\
 q[H_d] \\
 q[H_u] \\
 q[S]
\end{pmatrix}
= - \begin{pmatrix}
 0 \\
 -1 \\
 1 \\
 -1 \\
 0 \\
 -1 \\
 -1 \\
 1 \\
 0
\end{pmatrix}
\mod 3.

Compare with charge table. $\rightarrow B_3$ (baryon triality) in the MSSM sector

<table>
<thead>
<tr>
<th></th>
<th>Q</th>
<th>U^c</th>
<th>D^c</th>
<th>L</th>
<th>E^c</th>
<th>N^c</th>
<th>H_u</th>
<th>H_d</th>
<th>meaning of q</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_3</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>$-B + y/3$</td>
</tr>
</tbody>
</table>
Selection rule of B_3 and proton stability

The discrete charge of B_3 for arbitrary operator is $(-B + y/3) \mod 3$.

$$\Delta B = 3 \times \text{integer}$$

for any process. (Castano, Martin [1994])

(Baryon number can be violated by only $3 \times \text{integer}$ under the B_3.)

\rightarrow Proton decay ($\Delta B = 1$): Forbidden
Ensuring proton stability in the \mathcal{L} violating model (B_3)

1. Solve the μ-problem with $U(1)'$ gauge symmetry.

2. Require \mathcal{L} violating terms such as $\lambda' L Q D^c$. [B_3 is invoked]

3. Then proton is absolutely stable!
Recap of the goal

Construct a stand-alone R_P violating TeV scale SUSY model without

1. μ-problem: $U(1)'$

2. proton decay problem: $U(1)' \rightarrow B_3$

3. dark matter problem (non-LSP dark matter)

A dark matter candidate without introducing an independent symmetry?
Residual discrete symmetry extended to hidden sector

: LUP dark matter from hidden sector

Hur, HL, Nasri [arXiv:0710.2653]

HL [arXiv:0802.0506]
Lightest U-parity Particle (LUP) dark matter

SM-singlet exotics (hidden sector fields)

SM-singlet exotics: often required for anomaly cancellations with $U(1)'$

\[([\text{gravity}]^2 - U(1)', [U(1)']^3) \]

We consider Majorana fields for simplicity.

\[W_{\text{hidden}} = \frac{\xi}{2} SXX \]

These hidden sector fields (X) are neutral and massive particles.

→ Potentially dark matter candidate if they are stable.
How to stabilize hidden sector field?

Introduce “U-parity”

\[U_p[\text{MSSM}] = \text{even}, \quad U_p[X] = \text{odd} \]

- Lightest U-parity Particle (LUP): Lightest $X \rightarrow$ stable
 either fermion (ψ_X) or scalar (ϕ_X) component

It can be invoked as a residual discrete symmetry of the $U(1)'$.

\[Z_{hid}^N : U_2 \quad (U\text{-parity}) \]

\[z[F_i] = q[F_i] + 2n_i \]

<table>
<thead>
<tr>
<th></th>
<th>Q</th>
<th>U^c</th>
<th>D^c</th>
<th>L</th>
<th>E^c</th>
<th>N^c</th>
<th>H_u</th>
<th>H_d</th>
<th>X</th>
<th>meaning of q</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$-U$ (X number)</td>
</tr>
</tbody>
</table>

(Other exotics: assumed to be heavier than the lightest X.)
Discrete symmetries over the MSSM and the hidden sectors

Now consider $U(1)' \rightarrow Z^\text{tot}_6$, which is

$$Z^\text{tot}_6 = B_3 \times U_2$$

with $q = 2q_B + 3q_U \mod 6$.

<table>
<thead>
<tr>
<th>$Z_6 = B_3 \times U_2$</th>
<th>Q</th>
<th>U^c</th>
<th>D^c</th>
<th>L</th>
<th>E^c</th>
<th>N^c</th>
<th>H_u</th>
<th>H_d</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>-2</td>
<td>2</td>
<td>-2</td>
<td>-2</td>
<td>0</td>
<td>2</td>
<td>-2</td>
<td>-3</td>
</tr>
</tbody>
</table>

(Other exotic fields: assumed to be heavier than proton and the LUP → not stable due to the discrete symmetry.)

More generally, it is $U(1)' \rightarrow Z^\text{tot}_N$, which is

$$Z^\text{tot}_N = Z^\text{obs}_N \times Z^\text{hid}_N$$

(where $N = N_1 N_2$; N_1 and N_2 are coprime).
A unified picture of the stabilities in the observable and hidden sectors

\[U(1)' \rightarrow Z_{N_1}^{obs} \times Z_{N_2}^{hid} \]

MSSM sector

\[Z_{N_1}^{obs} (B_3) \]

: stable proton

Hidden sector

\[Z_{N_2}^{hid} (U_2) \]

: stable dark matter

A single $U(1)'$ gauge symmetry provides stabilities for proton (MSSM sector) and dark matter (hidden sector).
Lightest U-parity Particle (LUP) dark matter

Lightest U-parity Particle (LUP)

- It is a neutral, massive, and stable particle from hidden sector.
- It can be either a fermion or a scalar.
- It is neither the RH neutrino nor RH sneutrino ($H_u LN^c$).
- It naturally arises when an extra $U(1)$ gauge symmetry is present.

To be a viable dark matter candidate, it should satisfy the *relic density* and *direct detection* constraints, too.
Annihilation channels for the LUP dark matter

For ψ_X (fermionic) LUP,

1. $\psi_X\psi_X \rightarrow f\bar{f}$ (Z' mediated s-channel)

2. $\psi_X\psi_X \rightarrow \tilde{f}\tilde{f}^*$ (S mediated s-channel, Z' mediated s-channel)

3. $\psi_X\psi_X \rightarrow SS, Z'Z'$ (S mediated s-channel, ψ_X mediated t-channel)

4. $\psi_X\psi_X \rightarrow SZ'$ (Z' mediated s-channel, ψ_X mediated t-channel)

5. $\psi_X\psi_X \rightarrow \tilde{S}\tilde{S}$ (Z' mediated s-channel, ϕ_X mediated t-channel)

6. $\psi_X\psi_X \rightarrow \tilde{Z}'\tilde{Z}'$ (ϕ_X mediated t-channel)

7. $\psi_X\psi_X \rightarrow \tilde{S}\tilde{Z}'$ (S mediated s-channel, ϕ_X mediated t-channel)

and also similarly for ϕ_X (scalar) LUP.
Predictions of relic density and direct detection cross-section (for ϕ_X)

[Simulated with micrOMEGAs + newly constructed UMSSM model file]

LUP dark matter can satisfy both the relic density and direct detection constraints.
Summary

R-parity conserving model vs. R-parity violating $U(1)'$ model

<table>
<thead>
<tr>
<th></th>
<th>R_p</th>
<th>$U(1)' \rightarrow B_3 \times U_p$</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPV signals</td>
<td>impossible</td>
<td>possible</td>
</tr>
<tr>
<td>μ-problem</td>
<td>not addressed</td>
<td>solvable ($U(1)'$)</td>
</tr>
<tr>
<td>proton</td>
<td>unstable w/ dim 5 op. (R_p)</td>
<td>stable (B_3)</td>
</tr>
<tr>
<td>dark matter</td>
<td>stable LSP (R_p)</td>
<td>stable LUP (U_p)</td>
</tr>
</tbody>
</table>

Conclusion: TeV scale $U(1)'$ is an attractive alternative to R-parity.
Summary

R-parity conserving model vs. R-parity violating $U(1)'$ model

<table>
<thead>
<tr>
<th></th>
<th>R_p</th>
<th>$U(1)' \rightarrow B_3 \times U_p$</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPV signals</td>
<td>impossible</td>
<td>possible</td>
</tr>
<tr>
<td>μ-problem</td>
<td>not addressed</td>
<td>solvable ($U(1)'$)</td>
</tr>
<tr>
<td>proton</td>
<td>unstable w/ dim 5 op. (R_p)</td>
<td>stable (B_3)</td>
</tr>
<tr>
<td>dark matter</td>
<td>stable LSP (R_p)</td>
<td>stable LUP (U_p)</td>
</tr>
</tbody>
</table>

Conclusion: TeV scale $U(1)'$ is an attractive alternative to R-parity.