EWSB and CDM from hidden sector technicolor interaction

based on arXiv:0709.1218 [hep-ph] with P. Ko, D.W. Jung and Jae Yong Lee and works in preparation

Taeil Hur

KAIST

SUSY08 June 20, 2008

Outline

- Why "Strongly Interacting Hidden Sector"?
- Model I
 - EWSB and DM from strongly interacting hidden sector
- Model II
 - Fully scale-symmetric version
- Conclusion

Motivations for New Physics

The Standard Model gives very successful description of the observed physical world, but it is far from being complete yet.

- Baryon asymmetry
- Neutrino mass and mixing
- Dark matter
- **a**

Dark Matter

Evidences and abundance of Dark Matter

- Galaxy rotation curve, Dynamics of galaxy cluster, and Gravitational Lensing
- WMAP+SDSS result :

$$\Omega_{CDM} h^2 = 0.111^{+0.011}_{-0.015}$$
 (2σ range)

Required Properties of Dark Matter

Massive, Neutral, and Stable (or long-lived)

Dark Matter Candidates in the Various Models

- MSSM R-parity: LSP
- Little Higgs T-parity: LTP
- Universal Extra Dimension KK-parity: LKP

While the extended particle spectrum provides a new massive, neutral particle, we usually need an **additional symmetry** (e.g. R-parity, T-parity) to make it **stable**.

Strongly Interacting Hidden Sector

Why Hidden Sector?

- Many GUT models have hidden sectors which are singlets under the SM gauge group $SU(3)_C \times SU(2)_L \times U(1)_Y$.
- No strong constraints from experiments.

Why Strongly Interacting Hidden Sector?

- Stable particles from its accidental flavor symmetry without ad hoc Z₂ parity:
 Ex.)
 - Protons in SM QCD
 - Pions in SM QCD (if no EW interaction.)
- New scale Λ_H (like Λ_{QCD}) is generated quantum mechanically by dimensional transmutation.
 - \rightarrow EW scale can be generated from Λ_H .

Higgs Portal to Hidden Sector

Interaction between SM and Hidden Sector

Singlet Operators in the Standard Model

Dim 2 : $H^{\dagger}H$

Dim 2.5 : $\overline{L}H$ (not singlet under Lorentz group)

Dim 4 : $(H^{\dagger}H)^2$, \overline{Q}_LHd_R etc.

• The operator $H^{\dagger}H$ has lowest-mass-dimension.

We can expect that the hidden sector couples to the **Higgs** sector more strongly than the other operators in SM by dimensional analysis.

$$\mathcal{L}
ightarrow rac{c}{\Lambda^{d_{\mathsf{SM}}+d_{\mathsf{Hidden}}-4}} O_{\mathsf{SM}} O_{\mathsf{Hidden}}$$

• Strong $SU(N_h)$ gauge group in hidden sector with $N_{h,f}$ vector-like hidden quarks.

• Hidden sector **pion** π_h is (dominant) **CDM**.

- Higgs is the only SM particle interacting with hidden sector.
 - Nonrenormalizable interaction : Model I
 - Renormalizable interaction with singlet S: Model II

Classical scale symmetry

- \rightarrow No dimensionful parameter : $\mu_H^2 = \mathbf{0}$.
- $\rightarrow \Lambda_H$ from hidden sector strong interaction is the only source of energy scale.

We assume :

- Strong $SU(N_h)$ gauge group in hidden sector with $N_{h,f}$ vector-like hidden quarks.
- Hidden sector **pion** π_h is (dominant) **CDM**.
- Higgs is the only SM particle interacting with hidden sector.
 - Nonrenormalizable interaction : Model I
 - Renormalizable interaction with singlet S: Model II
- Classical scale symmetry
 - \rightarrow No dimensionful parameter : $\mu_H^2 = \mathbf{0}$.
 - $\rightarrow \Lambda_H$ from hidden sector strong interaction is the only source of energy scale.

Why Hidden Sector Model I Model II Conclusion

Model I: Lagrangian

SM sector

$$\mathcal{L}_{ ext{SM}} = \mathcal{L}_{ ext{kin}} + \mathcal{L}_{ ext{Yukawa}} - rac{\lambda_1}{2} \; (extit{H}_1^\dagger extit{H}_1)^2 + \mu_1^2 \; extit{H}_1^\dagger extit{H}_1$$

 μ_1^2 is the only dimensionful parameter in the SM sector.

Hidden Sector

— new strong interaction with hidden quarks \mathcal{Q}_k

$$\mathcal{L}_{ ext{hidden}} = -rac{1}{4}\mathcal{G}_{\mu
u}\mathcal{G}^{\mu
u} + \sum_{k=1}^{N_{h,f}} \overline{\mathcal{Q}}_k \left(iD\cdot\gamma - M_{\mathcal{Q}_k}
ight)\mathcal{Q}_k.$$

Messenger Sector?

$$\mathcal{L}_{\mathrm{mixing}} = \frac{1}{\Lambda_{\mathrm{mess}}^n} H_1^\dagger H_1 \times ...$$

Hidden Sector

$$\mathcal{L}_{ ext{hidden}} = -rac{1}{4}\mathcal{G}_{\mu
u}\mathcal{G}^{\mu
u} + \sum_{k=1}^{N_{h,f}} \overline{\mathcal{Q}}_{k} \left(iD\cdot\gamma - M_{\mathcal{Q}_{k}}
ight)\mathcal{Q}_{k}.$$

- $N_{h,f} = 2$ like (u,d) system in real QCD
- Confinement occurs at the scale Λ_H
- $M_{\mathcal{Q}_k} \ll \Lambda_H$: Approximate global symmetry $SU(2)_L \times SU(2)_R$.

Below $\Lambda_{h,\chi} \approx 4\pi\Lambda_H$, the approximate global symmetry is broken to $SU(2)_V$, and the theory can be described by the low energy effective theory with pseudo NG bosons (pions):

Linear or Non-linear σ model

Effective Lagrangian below $\Lambda_{h,\chi}$ scale

Gell-Mann-Levy's linear σ model.

$$egin{aligned} V(H_1,H_2) &= -\mu_1^2(H_1^\dagger H_1) + rac{\lambda_1}{2}(H_1^\dagger H_1)^2 \ -\mu_2^2(H_2^\dagger H_2) + rac{\lambda_2}{2}(H_2^\dagger H_2)^2 + \lambda_3(H_1^\dagger H_1)(H_2^\dagger H_2) - rac{a v_2^3}{2} \sigma_h \end{aligned}$$

- $H_2 = \begin{pmatrix} \pi_h^+ \\ \frac{v_2 + \sigma_h + i\pi_h^0}{\sqrt{2}} \end{pmatrix}$: meson fields from condensation of hidden quarks (SM singlet).
- If $\mu_1^2 = 0$, the SM sector has the classical scale symmetry.
- λ_3 gives effective μ_1 term when H_2 gets VEV.
- $\frac{av_2^3}{2}\sigma_h$: the explicit chiral symmetry breaking term originated from M_{Q_i} .
 - It makes the dark matter candidate (pions) massive.

Particle Spectrum

Higgs Sector and Mixing

$$\begin{pmatrix} h \\ H \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} h_{\text{SM}} & \text{from } H_1 \\ \sigma_h & \text{from } H_2 \end{pmatrix}.$$

• The couplings between SM particles and the light (heavy) Higgs is suppressed by $\cos \alpha$ ($\sin \alpha$).

Hidden Sector Pions (Dark Matter Candidate)

- $\pi_h^+, \pi_h^-, \pi_h^0$ (corresponding to three $SU(2)_A$ generators)
- $M_{\pi_h}^2 = \frac{av_2^2}{2}$
- Stable from flavor symmetry of hidden quarks without ad hoc Z₂ symmetry.

Branching Ratios of Higgs fields

($aneta = 1, \; m_h = 120 {
m GeV}, \; m_H = 300 {
m GeV}$, and $\mu_1^2 = 0$)

Input parameters for numerical calculation

- tan β , m_{π_h} , m_h , m_H , cos α (5 parameters)
- ullet If $\mu_1^2=0$, o tan $eta=rac{{f v}_2}{{f v}_1}$, m_{π_h} , m_h , m_H (4 parameters)

• When $2m_{\pi_h} < m_h$, channel $h \to \pi_h \pi_h$ opens, and the $Br(h \to {\sf SM} \ {\sf particles})$ is modified significantly.

Relic Density Plot

($\tan \beta = 1$, $m_H = 500 \text{GeV}$)

contour : $\log \Omega_{DM} h^2$

Annihilation channel

 $\pi_h \pi_h \rightarrow 2$ SM particles (S channel mediated by h and H)

Direct Detection Plot

($\tan \beta = 1$)

• green : within WMAP+SDSS 2σ , blue : below WMAP+SDSS

Direct detection — $\sigma_{SI}(\pi_h p \rightarrow \pi_h p)$

 $\pi_h q \to \pi_h q$ (T channel mediated by h and H)

Summary - Model I

- The strongly interacting hidden sector can give successful EWSB without any dimensionful parameters in the SM sector.
- The hidden sector pion can be a good CDM.
 - The pion is stable without ad hoc Z_2 parity.
 - Some parameter sets are allowed by current experimental constraints: relic density and direct detection rate.

Something unsatisfactory yet:

- The SM and the hidden sector are interacting with nonrenormalizable term.
 - \rightarrow UV completion of the model ?
- The hidden sector does not have the classical scale symmetry. (because of hidden quark mass $M_{\mathcal{O}_k}$)
 - \rightarrow Model II (singlet-extended version)

Model II: Singlet Extended Model

We will ignore N_R which can directly couple to the singlet.

Why Hidden Sector Model I Model II Conclusion

Lagrangian

Additional real singlet S with classical scale symmetry

SM Sector (without $\mu_{H_1}^2$ term)

$$\mathcal{L}_{ ext{SM}} = \mathcal{L}_{ ext{kin}} + \mathcal{L}_{ ext{Yukawa}} - rac{\lambda_1}{2} \; (\textit{H}_1^\dagger \textit{H}_1)^2$$

Hidden Sector (without μ_s^2 term and M_{Q_k}) — Singlet + new strong interaction with hidden quarks

$$\mathcal{L}_{ ext{hidden}} = -rac{1}{4}\mathcal{G}_{\mu
u}\mathcal{G}^{\mu
u} + \sum_{k=1}^{N_{h,f}} \overline{\mathcal{Q}}_k \left(ext{i} D \cdot \gamma - \lambda_k \mathcal{S}
ight) \mathcal{Q}_k - rac{\lambda_\mathcal{S}}{8} \mathcal{S}^4$$

Renormalizable Mixing Term

$$\mathcal{L}_{\mathrm{mixing}} = -rac{\lambda_{1S}}{2}(H_1^\dagger H_1)S^2$$

Low Energy Effective Lagrangian below $\Lambda_{h,\chi}$

$$\mathcal{L}_{\text{hidden}}^{\text{eff}} = \frac{v_h^2}{4} \text{Tr}[\partial_{\mu} \Sigma_h \partial^{\mu} \Sigma_h^{\dagger}] + \frac{v_h^2}{2} \text{Tr}[\lambda S \mu_h (\Sigma_h + \Sigma_h^{\dagger})] - \frac{\lambda_S}{8} S^4$$

$$\mathcal{L}_{\text{mixing}} = -\frac{\lambda_{1S}}{2} H_1^{\dagger} H_1 S^2$$

$$-v_h^2 \Lambda_h^2 [\kappa_H \frac{H_1^{\dagger} H_1}{\Lambda_h^2} + \kappa_S \frac{S^2}{\Lambda_h^2} + \kappa_S' \frac{S}{\Lambda_h} + O(\frac{S H_1^{\dagger} H_1}{\Lambda_h^3}, \frac{S^3}{\Lambda_h^3})]$$

$$\approx -\frac{\lambda_{1S}}{2} H_1^{\dagger} H_1 S^2 - v_h^2 [\kappa_H H_1^{\dagger} H_1 + \kappa_S S^2 + \Lambda_h \kappa_S' S]$$

 Σ field

$$\Sigma_h(x) = e^{2i\Pi(x)/v_h}, \quad \Pi(x) = \pi_a \frac{\sigma_a}{2} = \begin{pmatrix} \frac{\pi^0}{2} & \frac{\pi^+}{\sqrt{2}} \\ \frac{\pi^-}{\sqrt{2}} & \frac{-\pi^0}{2} \end{pmatrix}$$

For simplicity, we assume all κ_H , κ_S , and κ_S' are zero.

Particle Spectrum

Higgs Sector

- Almost same structure with the Model I.
- h and H are mixtures of H_1 and S.
- The couplings between SM particles and the light (heavy) Higgs is suppressed by $\cos \alpha$ ($\sin \alpha$).
- The $Br(h \to SM \text{ particles})$ also modified significantly if $h \to \pi_h \pi_h$ opens.

Hidden Sector Pions (Dark Matter Candidate)

- $\pi_h^+, \pi_h^-, \pi_h^0$ (corresponding to three $SU(2)_A$ generators)
- Stable without ad hoc Z_2 symmetry.

Branching Ratios of Higgs

Input parameters for numerical calculation

• $\tan \beta = \frac{v_s}{v_l}$, v_h , m_{π_h} , m_h : 4 parameters

- 2 $m_b=120 \text{GeV}, v_b=1 \text{TeV}, \text{ and } \tan \beta=2$

Relic Density of π_h (Ωh^2)

- ① $v_h = 500 \text{GeV}$, and $\tan \beta = 1$
- $v_h = 1$ TeV, and $\tan \beta = 2$

Direct Detection Rates

 $\sigma_{SI}(\pi_h, p \to \pi_h, p)$

The cross-section is a function of M_{π_h} and v_h only.

- $v_h = 500 \text{GeV}$
- $v_h = 1 \text{TeV}$

Summary

- The lightest particle (π_h) in the strongly interacting hidden sector can be a good dark matter candidate.
- Without any dimensionful parameters in the fundamental lagrangian, all the mass scales can be generated from the scale symmetry breaking in the hidden sector.
- Future Works?
 - Extension of the model with additional gauge symmetry
 - Radiative corrections to the scalar potential
 - Gauge coupling unification of two sectors.
 - Supersymmetric version of this model ?

- END -

Thank you!