Higgs Boson Mass, New Physics and Inflation

Qaisar Shafi

shafi@bartol.udel.edu

Bartol Research Institute Department of Physics and Astronomy University of Delaware Newark, DE 19716, USA

OUTLINE

- Higgs Boson / Seesaw Mechanisms
- Gauge-Higgs Unification
- Inflation
- Conclusion

WHERE is the SM Higgs Boson?

From arguments based on vacuum stability and perturbativity, and with no new physics between M_Z and M_{Planck} , one finds

130 GeV $\lesssim m_h \lesssim$ 170 GeV

SM Higgs boson mass bounds

From the Higgs potential in the SM,

Higgs quartic coupling determines
$$M_H^2 = \lambda v^2$$
 $(v = 246 \text{GeV})$

Once Higgs mass is measured, its high energy behavior can be understood via <u>RGE running of</u> $\lambda(\mu)$

The Standard Model Higgs

Physics beyond the SM required by:

- Neutrino Oscillations
 - $\left(\Delta m_{SM}^2 \underset{\text{dim 5}}{\sim} 10^{-10} eV^2 \ll \Delta m_{ATM}^2, \Delta m_{SOL}^2\right)$ $\sum m_{\nu_i} \lesssim 1 \text{ eV}$
- $\frac{\delta T}{T}$ (Inflation) $\sim 10^{-5}$
- Non-baryonic DM ($\Omega_{CDM} \approx 0.25$)
- Baryon Asymmetry $(n_B/s \sim 10^{-10})$, with $\Omega_B \approx 0.05$
- Dark Energy

Additional Motivations

- Gauge Hierarchy Problem; $(M_W \ll M_P)$
- Fermion Masses & Mixings;
- Unification with Gravity (?)
- Family Replication
- Charge Quantization
- Origin of Parity Violation

In all seesaw scenarios, new particles couple to Higgs doublet

 \rightarrow contribute to Higgs quartic RGE for $\mu > M$

Running mass: $m_H(\mu) = \sqrt{\lambda}v$

Type I seesaw

Casas, Clemente, Ibarra & Quiros,

PRD 62, 053005 (2000);

Modification of RGEs in the presence of <u>3 singlet fermions</u> (Okada, Gogoladze, QS) with $\mathcal{L}_Y = y_{\nu}^{ij} \overline{\ell_i} \phi N_j$

For simplicity, we assume 3 degenerate N: $M = M \times 1_{3\times 3}$

Light neutrino mass matrix: $\mathbf{M}_{\nu} = -\frac{1}{2}v^{2}\mathbf{Y}_{\nu}^{T}\mathbf{M}^{-1}\mathbf{Y}_{\nu} = \frac{v^{2}}{2M}\mathbf{Y}_{\nu}^{T}\mathbf{Y}_{\nu}$

For $\mu < M$, SM RGEs For $\mu \ge M$, $\frac{dy_t}{d \ln \mu} = y_t \left(\frac{1}{16\pi^2} \beta_t^{(1)} + \frac{1}{(16\pi^2)^2} \beta_t^{(2)} \right) \quad \beta_t^{(1)} \to \beta_t^{(1)} + \text{tr} [\mathbf{S}_{\nu}]$ $\frac{d\lambda}{d \ln \mu} = \frac{1}{16\pi^2} \beta_{\lambda}^{(1)} + \frac{1}{(16\pi^2)^2} \beta_{\lambda}^{(2)} \qquad \beta_{\lambda}^{(1)} \to \beta_{\lambda}^{(1)} + 4 \text{tr} [\mathbf{S}_{\nu}] \lambda - 4 \text{tr} [\mathbf{S}_{\nu}^2]$ $16\pi^2 \frac{d\mathbf{S}_{\nu}}{d \ln \mu} = \mathbf{S}_{\nu} \left[6y_t^2 + 2 \text{tr} [\mathbf{S}_{\nu}] - \left(\frac{9}{10} g_1^2 + \frac{9}{2} g_2^2 \right) + 3 \mathbf{S}_{\nu} \right] \qquad \mathbf{S}_{\nu} = \mathbf{Y}_{\nu}^{\dagger} \mathbf{Y}_{\nu}$

* We employ 2-loop SM RGEs + 1-loop new RGEs

Fixing the cutoff scale M_{Pl} , we investigate <u>Higgs mass bounds</u>

<u>Vacuum stability bound</u>: the lowest Higgs boson mass which satisfies $\lambda(\mu) \ge 0$ for any scale between $M_H \le \mu \le M_{Pl}$

<u>Perturbativity bound</u>: the highest Higgs boson mass which satisfies

 $\lambda(\mu) \leq \sqrt{4\pi}$ for any scale between $M_H \leq \mu \leq M_{Pl}$

Type I Seesaw and Higgs Mass Bounds

Higgs boson mass bound as a function of M_R in the case with hierarchical mass spectrum. The lower and upper lines correspond to the stability and triviality bounds, respectively. The Higgs boson mass range is closed for $M_R = 1.86 \times 10^{15}$ GeV, where $m_h = 175$ GeV.

Casas et. al. (hep-ph/9904295); Gogoladze et.al. (unpublished).

Type I Seesaw and Higgs Mass Bounds

Higgs boson mass bound as a function of M_R in the case with inverted-hierarchical mass spectrum. The lower and upper lines correspond to the stability and triviality bounds, respectively. The Higgs boson mass range is closed for $M_R = 1.26 \times 10^{15}$ GeV, where $m_h = 173$ GeV.

Type I Seesaw and Higgs Mass Bounds

Higgs boson mass bound as a function of Y_{ν} . The lower and upper lines correspond to the stability and triviality bounds, respectively. The limit $Y_{\nu} = 0$ reproduces the SM result. The Higgs boson mass range is closed for $Y_{\nu} \simeq 1.6$.

Type II seesaw

Gogoladze, N.O. & Shafi, arXive: 0802.3257 [hep-ph]

We introduce a triplet scalar field

 Δ : (3,1) under $SU(2)_L \times U(1)_Y$

$$\Delta = \frac{\sigma^i}{\sqrt{2}} \Delta_i = \begin{pmatrix} \Delta^+ / \sqrt{2} & \Delta^{++} \\ \Delta^0 & -\Delta^+ / \sqrt{2} \end{pmatrix}$$

Scalar potential

$$V(\Delta, \phi) = -m_{\phi}^{2}(\phi^{\dagger}\phi) + \frac{\lambda}{2}(\phi^{\dagger}\phi)^{2} + M_{\Delta}^{2} \operatorname{tr} (\Delta^{\dagger}\Delta) + \frac{\lambda_{1}}{2} (\operatorname{tr}\Delta^{\dagger}\Delta)^{2} + \frac{\lambda_{2}}{2} \left[(\operatorname{tr}\Delta^{\dagger}\Delta)^{2} - \operatorname{tr} (\Delta^{\dagger}\Delta\Delta^{\dagger}\Delta) \right] + \lambda_{4}\phi^{\dagger}\phi \operatorname{tr} (\Delta^{\dagger}\Delta) + \lambda_{5}\phi^{\dagger} \left[\Delta^{\dagger}, \Delta \right] \phi + \left[\frac{\Lambda_{6}}{\sqrt{2}} \phi^{T} i \sigma_{2} \Delta^{\dagger}\phi + \operatorname{h.c.} \right],$$

Many new couplings: $\lambda_1, \lambda_2, \lambda_4, \lambda_5$ $\Lambda_6 = \lambda_6 M_{\Delta}$

Neutrino Yukawa coupling:

$$\mathcal{L}_{\Delta} = -\frac{1}{\sqrt{2}} (Y_{\Delta})_{ij} \ell_L^{Ti} \text{Ci}\sigma_2 \Delta \ell_L^j + \text{h.c.}$$

$$\langle \phi \rangle = \frac{v}{\sqrt{2}} \quad \Rightarrow \text{Tadpole term for the triplet scalar}$$

$$\Rightarrow \langle \Delta \rangle \sim \frac{\lambda_6 v^2}{M_{\Delta}}$$
Neutrino mass: $\mathbf{M}_{\nu} = \frac{v^2 \mathbf{Y}_{\Delta} \lambda_6}{2 M_{\Delta}}$

After integrating out the heavy triplet, we have

$$V(\phi)_{\text{eff}} = -m_{\phi}^2(\phi^{\dagger}\phi) + \frac{1}{2}\left(\lambda - \lambda_6^2\right)(\phi^{\dagger}\phi)^2$$

SM Higgs quartic is defined as $\lambda_{\rm SM} = \lambda - \lambda_6^2$

Now we solve RGEs in the presence of Type II seesaw

Many free parameters: $\lambda, \lambda_1, \lambda_2, \lambda_4, \lambda_5, \lambda_6, Y_{\Delta}$

For $\mu < M_{\Delta}$, SM RGEs

For $\mu \geq M_{\Delta}$,

$$\frac{dg_i}{d\ln\mu} = \frac{b_i}{16\pi^2} g_i^3 + \frac{g_i^3}{(16\pi^2)^2} \left(\sum_{j=1}^3 B_{ij} g_j^2 - C_i y_t^2\right)$$
$$b_i = \left(\frac{41}{10}, -\frac{19}{6}, -7\right) \rightarrow b_i = \left(\frac{47}{10}, -\frac{5}{2}, -7\right)$$

$$\frac{d\lambda}{d\ln\mu} = \frac{1}{16\pi^2} \beta_{\lambda}^{(1)} + \frac{1}{(16\pi^2)^2} \beta_{\lambda}^{(2)} \qquad \beta_{\lambda}^{(1)} \to \beta_{\lambda}^{(1)} + 6\lambda_4^2 + 4\lambda_5^2$$

with the matching condition: $\lambda_{\rm SM} = \lambda - \lambda_6^2$

*** We employ 2-loop SM RGEs + 1-loop new RGEs**

$$\begin{split} 16\pi^{2}\frac{d\lambda_{1}}{d\ln\mu} &= -\left(\frac{36}{5}g_{1}^{2}+24g_{2}^{2}\right)\lambda_{1}+\frac{108}{25}g_{1}^{4}+18g_{2}^{4}+\frac{72}{5}g_{1}^{2}g_{2}^{2} \\ &\quad +14\lambda_{1}^{2}+4\lambda_{1}\lambda_{2}+2\lambda_{2}^{2}+4\lambda_{4}^{2}+4\lambda_{5}^{2}+4\mathrm{tr}\left[\mathbf{S}_{\Delta}\right]\lambda_{1}-8\mathrm{tr}\left[\mathbf{S}_{\Delta}^{2}\right], \\ 16\pi^{2}\frac{d\lambda_{2}}{d\ln\mu} &= -\left(\frac{36}{5}g_{1}^{2}+24g_{2}^{2}\right)\lambda_{2}+12g_{2}^{4}-\frac{144}{5}g_{1}^{2}g_{2}^{2} \\ &\quad +3\lambda_{2}^{2}+12\lambda_{1}\lambda_{2}-8\lambda_{5}^{2}+4\mathrm{tr}\left[\mathbf{S}_{\Delta}\right]\lambda_{2}+8\mathrm{tr}\left[\mathbf{S}_{\Delta}^{2}\right], \\ 16\pi^{2}\frac{d\lambda_{4}}{d\ln\mu} &= -\left(\frac{9}{2}g_{1}^{2}+\frac{33}{2}g_{2}^{2}\right)\lambda_{4}+\frac{27}{25}g_{1}^{4}+6g_{2}^{4} \\ &\quad +\left(8\lambda_{1}+2\lambda_{2}+6\lambda+4\lambda_{4}+6y_{t}^{2}+2\mathrm{tr}\left[\mathbf{S}_{\Delta}\right]\right)\lambda_{4}+8\lambda_{5}^{2}-4\mathrm{tr}\left[\mathbf{S}_{\Delta}^{2}\right], \\ 16\pi^{2}\frac{d\lambda_{5}}{d\ln\mu} &= -\frac{9}{2}g_{1}^{2}\lambda_{5}-\frac{33}{2}g_{2}^{2}\lambda_{5}-\frac{18}{5}g_{1}^{2}g_{2}^{2} \\ &\quad +\left(2\lambda_{1}-2\lambda_{2}+2\lambda+8\lambda_{4}+6y_{t}^{2}+2\mathrm{tr}\left[\mathbf{S}_{\Delta}\right]\right)\lambda_{5}+4\mathrm{tr}\left[\mathbf{S}_{\Delta}^{2}\right]. \\ 16\pi^{2}\frac{d\mathbf{S}_{\Delta}}{d\ln\mu} &= 6\mathbf{S}_{\Delta}^{2}-3\left(\frac{3}{5}g_{1}^{2}+3g_{2}^{2}\right)\mathbf{S}_{\Delta}+2\mathrm{tr}[\mathbf{S}_{\Delta}]\mathbf{S}_{\Delta} \qquad \mathbf{S}_{\Delta}=Y_{\Delta}^{\dagger}Y_{\Delta} \end{split}$$

RGE of λ_6 is decoupled from other RGEs, but plays an important role through the matching condition

Analysis is quite involved.....

We focus on most important parameters: $\lambda_4, \lambda_5, \lambda_6$

 $\begin{cases} \lambda_4, \lambda_5 & \text{appear in Higgs quartic RGE} \\ \lambda_6 & \text{shifts Higgs quartic coupling @} M_{\Delta} & \text{by the matching condition} \end{cases}$

We analyze RGEs for various λ_6 at the cutoff with others fixed λ_{5}

Fixing the cutoff scale M_{Pl} , we investigate <u>Higgs mass bounds</u>

Vacuum stability bound: the lowest Higgs boson mass which satisfies

 $\lambda(\mu) \geq 0$ for any scale between $M_H \leq \mu \leq M_{Pl}$

<u>Perturbativity bound</u>: the highest Higgs boson mass which satisfies

 $\lambda(\mu) \leq \sqrt{4\pi}$ for any scale between $M_H \leq \mu \leq M_{Pl}$

Sample:
$$\lambda_1 = \sqrt{4\pi}, \lambda_2 = -1, \lambda_4 = \lambda_5 = 0 \text{ and } Y_\Delta = 0$$

 $M_\Delta = 10^{12} \text{ GeV}$ Input: top quark pole mass = 172.6 GeV

Running Higgs mass

Higgs mass bounds versus λ_6 for various M_{Δ}

$$\begin{array}{l} \langle \Delta \rangle \sim \lambda_6 v^2 / M_\Delta \\ \Delta \rho = \rho - 1 \simeq \langle \Delta \rangle / v \lesssim 0.01 \end{array} \xrightarrow{} \lambda_6 \lesssim 0.01 M_\Delta / v .$$

Sample: $\lambda_1 = \sqrt{4\pi}, \ \lambda_2 = -1, \ \lambda_4 = 0, \ \Lambda_6 = 0 \text{ and } Y_\Delta = 0.$ $M_\Delta = 10^{12} \text{ GeV}$ Input: top quark pole mass = 172.6 GeV

Running Higgs mass

Sample: $\lambda_1 = \sqrt{4\pi}, \ \lambda_2 = -1, \ \lambda_4 = 0, \ \Lambda_6 = 0 \text{ and } Y_\Delta = 0.$ $M_\Delta = 10^{12} \text{ GeV}$ Input: top quark pole mass = 172.6 GeV

Running Higgs mass

Higgs mass bounds versus λ_5 for various M_{Δ}

 λ_5

Type III Seesaw and Higgs Mass

Introduce 3 generations of fermions ψ_i (i = 1, 2, 3), which transform as (3,0) under the electroweak gauge group SU(2)_L×U(1)_Y:

$$\psi_{i} = \sum_{a} \frac{\sigma^{a}}{2} \psi_{i}^{a} = \frac{1}{2} \begin{pmatrix} \psi_{i}^{0} & \sqrt{2}\psi_{i}^{+} \\ \sqrt{2}\psi_{i}^{-} & -\psi_{i}^{0} \end{pmatrix}.$$

With canonically normalized kinetic terms for the triplet fermions, we introduce the Yukawa coupling

$$\mathcal{L}_Y = y_{ij} \overline{\ell_i} \psi_j \Phi,$$

where Φ is the Higgs doublet.

Type III Seesaw and Higgs Mass

Gogoladze, Okada, Q.S_

Perturbativity (solid) and vacuum stability (dashed) bounds on the Higgs boson pole mass (m_h) versus Y_{ν} with the seesaw scale $M = 10^{13}$ GeV. The upper and lower dotted lines respectively show the perturbativity bound ($m_h \simeq 171$ GeV) and the vacuum stability bound ($m_h \simeq 131$ GeV) in the SM case.

Type III Seesaw and Higgs Mass

Perturbativity and vacuum stability bounds versus M, with a hierarchical mass spectrum (outer region in red), and an inverted-hierarchical mass spectrum (inner region in blue).

Low Energy Supersymmetry

- Resolution of the gauge hierarchy problem;
- Unification of the SM gauge couplings at $M_{GUT} \sim 2 \times 10^{16} \text{ GeV};$
- Cold dark matter candidate (LSP);
- Predicts new particles accessible at the LHC; Other good reasons:
- Radiative electroweak breaking;
- String theory requires susy .
 Leading candidate is the MSSM (Minimal Supersymmetric Standard Model).

The MSSM Higgs Boson

WARPED EXTRA DIMENSION

- Resolution of the gauge hierarchy problem (without invoking susy);
- ν Oscillations may be accommodated using dim 5 SM operators;
- ν could be Dirac or Majorana
- may be consistent with GUTS;
- may generate even 'smaller' scales: $M_P \rightarrow \text{TeV}^2/M_P \ (\sim 10^{-3}\text{eV})$
- KK excitations at LHC?

Gauge-Higgs Unification

Bulk Standard Model

5-dim. theory compactified on orbifold S^1/Z_2

All SM fields reside in the bulk

<u>Higgs boson associated with 5th component of gauge fields</u> <u>in higher dimension</u>

Gauge-Higgs Unification

- [2] V. Barger, J. Jiang, P. Langacker and T. Li, Phys. Lett. B 624, 233 (2005); Nucl. Phys. B 726, 149 (2005); Model with non-canonical normalization for U(1)_Y have also been discussed by I. Gogoladze, T. Li, V. N. Senoguz and Q. Shafi, Phys. Rev. D 74, 126006 (2006); I. Gogoladze, C. A. Lee, T. Li and Q. Shafi, arXiv:0704.3568 [hep-ph]; A. Kehagias and N.D. Tracas, arXiv:hep-ph/0506144; A. Aranda, J. L. Diaz-Cruz and A. Rosado, Int. J. Mod. Phys. A 22, 1417 (2007).
- [3] I. Gogoladze, T. Li and Q. Shafi, Phys. Rev. D 73, 066008 (2006)
- [4] N. S. Manton, Nucl. Phys. B 158, 141 (1979); D. B. Fairlie, J. Phys. G 5, L55 (1979);
 Phys. Lett. B 82, 97 (1979).
- [5] Y. Hosotani, Phys. Lett. B 126, 309 (1983); Phys. Lett. B 129, 193 (1983); Phys. Rev. D 29, 731 (1984); Annals Phys. 190, 233 (1989).
- [6] N. V. Krasnikov, Phys. Lett. B 273, (1991), 246; H. Hatanaka, T. Inami and C. S. Lim, Mod. Phys. Lett. A 13, (1998), 2601; G. R. Dvali, S. Randjbar-Daemi and R. Tabbash, Phys. Rev. D 65, (2002), 064021; N. Arkani-Hamed, A. G. Cohen and H. Georgi, Phys. Lett. B 513, (2001), 232; I. Antoniadis, K. Benakli and M. Quiros, New J. Phys. 3, (2001), 20.
- [7] M. Kubo, C. S. Lim and H. Yamashita, Mod. Phys. Lett. A 17 (2002), 2249; C. A. Scrucca, M. Serone and L. Silvestrini, Nucl. Phys. B 669 (2003), 128; C. A. Scrucca, M. Serone, L. Silvestrini and A. Wulzer, JHEP 0402, 049 (2004); G. Panico and M. Serone, JHEP 0505, 024 (2005) N. Haba, Y. Hosotani, Y. Kawamura and T. Yamashita, Phys. Rev. D 70 (2004), 015010; N. Haba and T. Yamashita, JHEP 0404 (2004) 016; Y. Hosotani, S. Noda and K. Takenaga, Phys. Rev. D 69 (2004), 125014; Phys. Lett. B 607 (2005), 276; K. W. Choi, N. Y. Haba, K. S. Jeong, K. I. Okumura, Y. Shimizu and M. Yamaguchi, JHEP 0402, 037 (2004); A. Demaria and K. L. McDonald, Phys. Rev. D 75, 056006 (2007).
- [8] N. Haba, S. Matsumoto, N. Okada and T. Yamashita, JHEP 0602, 073 (2006).
- [9] M. Sakamoto and K. Takenaga, Phys. Rev. D 75, 045015 (2007).
- [10] N. Maru and T. Yamashita, Nucl. Phys. B **754**, 127 (2006).
- [11] For example, see G. Cacciapaglia, C. Csaki and S. C. Park, JHEP 0603, 099 (2006), and references therein.

Impose non-trivial boundary conditions (parity assignment)

are Z2 even fields, others odd fields

Zero modes for odd fields are project out,

So SU(3) is broken to SU(2) X U(1) by this parity assignment

5th component of 5dim gauge field \rightarrow scalar in 4D theories

We identify ``H" as Higgs doublet in the SM → gauge-Higgs unification

$$\mathcal{L}_{5}^{gauge} = -\frac{1}{4} F^{aMN} F^{a}_{MN} = -\frac{1}{4} F^{a\mu\nu} F^{a}_{\mu\nu} + \frac{1}{2} F^{a\mu}_{5} F^{a}_{5\mu}$$
$$\frac{1}{2} F^{a\mu}_{5} F^{a}_{5\mu} \rightarrow (D_{\mu}H)^{\dagger} (D_{\mu}H) \qquad \text{Kinetic term for Higgs is included as}$$
$$H : (2, +1/2) \qquad \text{5dim SU(3) gauge interaction}$$

5 dimensional gauge symmetry → No mass and quartic coupling @ tree

Phenomenologically interesting observation ``Gauge-Higgs Condition'' \rightarrow realization of gauge-Higgs unification at UV is equivalent to imposing ``vanishing quartic Higgs couping'' at $\Lambda_{cut} = 1/(2\pi R)$ Haba, Matsumoto, N.O.&Yamashita, JHEP 0602, 073 (2006)

Application of the guage-Higgs condition

UV completion of the SM by (5D) gauge-Higgs unification

→Higgs boson mass prediction

as a function of the compactification scale

by imposing the condition $\lambda_H(\Lambda) = 0$

Gogoladze, N.O. & Shafi

Phys. Lett. B, 257 (2007)

Gauge and top Yukawa Unification

Gauge and top Yukawa Unification

	$M_t = 169.1$	$M_t = 170.9$	$M_t = 172.8$
Λ	3.26×10^7	8.41×10^7	2.34×10^8
m_h	112.9	117.0	121.1

Standard Model (SM) + Einstein' GR

 \Rightarrow Hot Big Bang Cosmology

Predictions

- Existence of CMB;
- Redshift (Galaxies);
- Primordial Nucleosynthesis.

Figure 4: Spectrum of the Cosmic Microwave Background Radiation as measured by the FIRAS instrument on COBE and a black body curve for T = 2.7277 K. Note, the error flags have been enlarged by a factor of 400. Any distortions from the Planck curve are less than 0.005% (see Fixsen *et al.*, 1996).

Standard Model (SM) + Einstein' GR

Hot Big Bang Cosmology fails to explain

- 1) Observed Isotropy of CMB(COBE)
- 2) Origin of $\frac{\delta T}{T}$ -COBE,..., WMAP
- 3) $\Omega_{total} = 1$ (critical density)
- 4) $\Omega_{CDM} = 0.22$ (non-baryonic DM)
- 5) $n_b/n_\gamma = 10^{-10}$ (baryon asymmetry)

If GR stays intact, an extension of the SM is needed.
 (Dark Energy?)

- Inflationary Cosmology can take care of (1), (2), (3) and an inflation model can be called "realistic" if it can explain (4)→ CDM and (5) → n_b/n_γ . Some Models also provide a link with (6)→ neutrino physics.
- Testable predictions?

- One key parameter in cosmology is the scalar spectral index n_s. According to Harrison and Zeldovich (HZ), n_s = 1 is the most 'natural' value, referred to as the scale invariant value.
- The most recent analysis from WMAP-5 yields $n_s = 0.96 \pm 0.014$

(WMAP 1 : $n_s pprox 0.99 \pm 0.04$)

A far more precise determination of n_s is crucial for distinguishing inflation models.

- Inflation model come in variety of flavors. These include:
 - Chaotic Inflation (Linde,, Murayama, ..., Yanagida)
 - New Inflation (Linde, Albrecht, Steinhardt,..., Senoguz,....)
 - Hybrid Inflation (non-susy, susy)
 - Supergravity Inflation
 - Brane Inflation (Dvali, Tye, Q.S....)
 - Compactification (Arkani Hamed et.al,, Schmidt et.al,....)
 - Quintessence/Inflation

Quartic (CW) Potential (non-susy)

Q.S, Vilenkin;Senoguz

$$V(\phi) = A\phi^4 \left(ln\left(\frac{\phi}{M}\right) - \frac{1}{4} \right) + \frac{AM^4}{4}$$

$$\phi = \text{gauge singlet}$$

$$V(\phi = M) = 0; V(\phi = 0) = \frac{AM^4}{4} \equiv V_0$$

$$V(\phi << M) = \frac{AM^4}{4} - b\phi^4$$

Quartic (CW) Potential (non-susy)

Quartic (CW) Potential (non-susy)

• For
$$V_0^{1/4} < 10^{16}$$
 GeV,
 $\phi < m_P \ (\simeq 2.4 \times 10^{18} \text{ GeV})$
 $V \simeq V_0 \ \left(1 - (\phi/M)^4\right)$
 $n_s \simeq 1 - \frac{3}{N_0}, \quad \alpha \simeq (n_s - 1) \ /N_0$
 \uparrow
e-folds for $k_0 = 0.002 M pc^{-1}$

 $\left(V_0^{1/4} > 10^5 \text{ GeV to avoid conflict with WMAP}\right)$

From New to Large Field Inflation

• For $V_0^{1/4} \gtrsim 10^{16}$ GeV, $\phi > m_P$ during observable inflation. Predictions approach that of ϕ^2 potential, with $n_s = 1 - \frac{2}{N_0} \simeq 0.96$ $r \simeq 0.13$ $\alpha \simeq -0.6 \times 10^{-3}$

The spectral index n_s vs $\log[V(\phi_0)^{1/4} (\text{GeV})]$ for the Coleman-Weinberg potential (green curve), compared with the WMAP+BAO+SN range for n_s (68% and 95% confidence levels, taken from Komatsu *et al.*, astro-ph/0803.0547).

The tensor to scalar ratio r vs the spectral index n_s for the Coleman-Weinberg potential (blue curve). The WMAP+BAO+SN contours (68% and 95% confidence levels) are taken from Komatsu *et al.*, astro-ph/0803.0547.

$V_0^{1/4}$ (GeV)	$A(10^{-14})$	Μ	ϕ_e	ϕ_0	$V(\phi_0)^{1/4}(GeV)$	n_s	$\alpha(-10^{-3})$	r
10^{13}	1.0	0.018	0.010	$3.0 imes 10^{-6}$	$\approx V_0^{1/4}$	0.938	1.4	9×10^{-15}
5×10^{13}	1.2	0.088	0.050	7.5×10^{-5}	$pprox V_0^{1/4}$	0.940	1.3	5×10^{-12}
10^{14}	1.3	0.17	0.10	3.0×10^{-4}	$\approx V_0^{1/4}$	0.940	1.2	9×10^{-11}
$5 imes 10^{14}$	1.9	0.79	0.51	$7.5 imes 10^{-3}$	$\approx V_0^{1/4}$	0.941	1.2	5×10^{-8}
10^{15}	2.3	1.5	1.1	0.030	$\approx V_0^{1/4}$	0.941	1.2	9×10^{-7}
$5 imes 10^{15}$	4.8	6.2	5.1	0.71	$\approx V_0^{1/4}$	0.942	1.0	5×10^{-4}
10^{16}	5.2	12	10	3.2	9.9×10^{15}	0.952	1.0	8×10^{-3}
2×10^{16}	1.1	36	35	23	1.7×10^{16}	0.966	0.6	0.07
3×10^{16}	.17	86	85	72	1.9×10^{16}	0.967	0.6	0.11
10 ¹⁷	.001	1035	1034	1020	2.0×10^{16}	0.966	0.6	0.14

 $(m_P = 1)$

Magnetic Monopoles and Inflation

Lazarides, Q.S⁻

Consider the breaking

$$SO(10) \longrightarrow 4 - 2 - 2 \longrightarrow 3 - 2 - 1$$

First breaking produces superheavy monopoles carrying one unit of Dirac charge

$$\pi_2(SO(10)/4 - 2 - 2) = Z_2;$$

The second breaking at scale M_c produces monopoles which carry two units of Dirac magnetic charge. These are intermediate mass monopoles and they may survive inflation.

Magnetic Monopoles and Inflation

- Consider the quartic coupling $-c\phi^2 \chi^{\dagger} \chi$, with $c \sim (M_c/M)^2$. Here χ vev breaks 4 2 2 to 3 2 1 and ϕ is the inflaton.
- Monopole formation occurs when $c\phi^2 \sim H^2$ $\longrightarrow H(t - t_{\chi}) \equiv \eta \sim 3c/\lambda$.
- Initial monopole number density ~ H^3 , which gets diluted by inflation down to $H^3 \exp(-3\eta)$; thus, $r_M = n_M / T_R^3 \sim (H/T_R)^3 \exp(-3\eta) \lesssim 10^{-30}$.
- Roughly 25- 30 *e*-folds can yield a flux close to or below the Parker bound.

Chaotic Inflation and Precision Cosmology

Scalar field ϕ with yukawa interactions $\frac{h}{2}\phi NN$.

$$V = \frac{1}{2}m^2\phi^2 + \frac{\lambda}{4!}\phi^4 + V_{1-loop},$$

where

$$V_{1-loop} = \frac{1}{64\pi^2} \left[\left(m^2 + \frac{\lambda}{2} \phi^2 \right)^2 \ln \left(\frac{m^2 + (\lambda/2)\phi^2}{\mu^2} \right) - 2 \left(h\phi + m_N \right)^4 \ln \left(\frac{h\phi + m_N}{\mu} \right) \right]$$

The inflationary parameters for the potential $V = (1/2)m^2\phi^2 - \kappa\phi^4\ln(\phi/m_P)$

(in units $m_P = 1$)										
$\log_{10}(\kappa)$	$m \ (10^{-6})$	ϕ_e	ϕ_0	$V(\phi_0)^{1/4}$	N_0	u_0	n_s	r	α (10 ⁻⁴)	
$V = (1/2)m^2\phi^2$ (assuming $\rho_{\rm reh} = 10^{-16}m^2m_P^2$)										
	6.437	1.457	15.26	0.008334	58.31		0.9657	0.1349	-5.901	
ϕ^2 branch										
-16	6.434	1.457	15.25	0.008322	58.31	319.4	0.9657	0.1341	-5.901	
-15	6.383	1.457	15.15	0.008204	58.47	30.2	0.9656	0.1267	-5.853	
-14.5	6.245	1.457	14.83	0.007891	58.5	8.355	0.9645	0.1085	-5.647	
-14.2	5.798	1.457	14.19	0.007212	58.43	3.165	0.9591	0.07567	-4.423	
-14.11	4.917	1.456	13.35	0.006241	58.23	2.067	0.9459	0.04239	-1.254	
				Hilltop	branch					
-14.11	4.917	1.456	13.35	0.006241	58.23	2.067	0.9459	0.04239	-1.254	
-14.2	3.628	1.456	12.35	0.005019	57.93	0.3324	0.9219	0.01769	3.196	
-14.5	2.146	1.455	11.18	0.003603	57.48	0.1447	0.8852	0.004665	6.022	
-15	1.032	1.455	10.04	0.002344	56.88	0.0531	0.8424	0.000826	5.236	
-16	0.268	1.453	8.617	0.001103	55.86	0.0102	0.7762	0.000039	2.254	

The tree level potential (solid), the ϕ^2 and hilltop solution potentials for $\log_{10}(\kappa) = -14.5$ (dashed), and the potential for $\log_{10}(\kappa) = -14.11$ where the two solutions meet (dotted). The points on the curves denote ϕ_0 .

FIG. 2: $1 - n_s$ and r vs. κ for the potential $V = (1/2)m^2\phi^2 - \kappa\phi^4 \ln(\phi/m_P)$. Solid and dashed curves correspond to ϕ^4 and hilltop branches respectively. Note that the curvature perturbation amplitude and number of e-folds require $\kappa \lesssim 7.4 \times 10^{-15}$.

(in units $m_P = 1$)										
$\log_{10}(\kappa)$	$\log_{10}(\lambda)$	ϕ_e	ϕ_0	$V(\phi_0)^{1/4}$	N_0	v_0	n_s	r	$\alpha~(10^{-4})$	
$V = (1/4!)\lambda\phi^4$										
	-12.07	2.53	22.39	0.009737	62.55		0.9517	0.251	-7.637	
ϕ^4 branch										
-15.	-12.03	2.516	22.31	0.00972	62.54	143.1	0.9519	0.2493	-7.606	
-14.	-11.78	2.438	21.69	0.009558	62.43	14.08	0.9539	0.2331	-7.372	
-13.5	-11.49	2.369	20.49	0.009058	62.2	3.834	0.9575	0.1881	-7.025	
-13.3	-11.36	2.338	19.35	0.008344	61.97	1.762	0.9577	0.1355	-6.261	
-13.24	-11.33	2.319	18.23	0.007421	61.74	0.9184	0.9512	0.08476	-3.725	
				Hilltop	branch					
-13.24	-11.33	2.319	18.23	0.007421	61.74	0.9184	0.9512	0.08476	-3.725	
-13.3	-11.41	2.305	17.11	0.006329	61.49	0.4937	0.9359	0.04481	0.9321	
-13.5	-11.63	2.292	15.85	0.004985	61.14	0.2391	0.9088	0.01718	6.326	
-14.	-12.15	2.276	14.15	0.003225	60.57	0.0799	0.8618	0.002978	8.232	
-15.	-13.18	2.256	12.15	0.001534	59.69	0.0151	0.7959	0.000149	4.078	

The inflationary parameters for the potential $V = (1/4!)\lambda\phi^4 - \kappa\phi^4\ln(\phi/m_P)$

 $1 - n_s$ and r vs. κ for the potential $V = (1/4!)\lambda\phi^4 - \kappa\phi^4 \ln(\phi/m_P)$. Solid and dashed curves correspond to ϕ^4 and hilltop branches respectively.

Tree level Inflation Potential: $V = \frac{1}{2}m^2\phi^2$ Radiative Corrections: $-\kappa\phi^4 \ln(\phi/m_P)$, $\kappa > 0$ (From Yukawa coupling $\frac{h}{2}NN\phi$)

Tree level Inflation Potential: $V = \frac{\lambda}{4!}\phi^4$ Radiative Corrections: $-\kappa\phi^4 \ln (\phi/m_P)$, $\kappa > 0$

Conclusion

The importance of the LHC for the future of high energy physics cannot be overemphasized. Important topics include:

- Nature of Electroweak Symmetry Breaking
- Supersymmetry
- Dark Matter (LSP)
- Extra Dimensions (Kaluza Klein excitations)
- Spontaneous Parity Violation (New gauge bosons, other TeV scale particles)
- TeV Scale Quantum Gravity (Black holes,...)

Exotic States (Magnetic Monopoles, Fractionally charged color singlets, Z flux tubes, Leptoquarks, diquarks, unparticle physics...).

Conclusion

- Precision Cosmology will play an important role in the search for new physics beyond the SM.
- Challenge for PLANCK and other ongoing/future expts: Determine n_s , n_T , $dn_s/d \ln k$, r, w_{DE} , to a high degree of precision
- Find DARK MATTER (LSP, axion, majoran, KK,...) ⇒ help discover standard model of inflation.

