The constrained NMSSM: mSUGRA and GMSB

U. Ellwanger, LPT Orsay

Motivation

MSSM: A supersymmetric Higgs(ino) mass term $\mu \gtrsim 100$ GeV is necessary in order to satisfy the LEP constraints on chargino (= higgsino/wino) masses, $\mu \lesssim M_{SUSY}$ is required for $\langle H_u \rangle$, $\langle H_d \rangle \neq 0$

NMSSM: The μ -term in the superpotential W of the MSSM is generated by the VEV of an additional gauge singlet superfield S:

$$W_{MSSM} = \mu H_u H_d + \dots \longrightarrow W_{NMSSM} = \lambda S H_u H_d + \frac{1}{3} \kappa S^3 + \dots$$

Soft SUSY breaking terms: $\mu B H_u H_d + \dots \rightarrow \lambda A_{\lambda} S H_u H_d + \frac{1}{3} \kappa A_{\kappa} S^3 + \dots$

If all SUSY breaking terms are of $\mathcal{O}(M_{SUSY})$: $\langle S \rangle \sim M_{SUSY}/\kappa \longrightarrow \mu_{eff} \equiv \lambda \langle S \rangle \sim \frac{\lambda}{\kappa} M_{SUSY} \checkmark$

New parameters: μ , $B|_{MSSM} \rightarrow \lambda$, κ , A_{λ} , $A_{\kappa}|_{NMSSM}$

 \rightarrow One additional neutral CP-even Higgs + CP-odd Higgs + neutralino from the singlet superfield S

Each of the neutralino/CP-even/CP-odd sectors can give rise to a phenomenology different from the MSSM:

a) The LSP can be dominantly singlino-like (consistent with WMAP constraints on Ωh^2 , if only a few GeV below the NLSP, see G. Belanger et al.) \rightarrow additional contribution to sparticle decay chains; the NLSP could have a long life time!

b) The SM-like CP-even Higgs scalar h_1 can be ~ 15 GeV heavier than in the MSSM (for low tan β !)

c) A CP-odd Higgs scalar a_1 can be (very) light (see the talk by J. Gunion)

- \rightarrow impact on B physics (see the talk by M. Sanchis-Lozano)
- $\rightarrow h_1$ can decay dominantly into $h_1 \rightarrow a_1 a_1$; then:
- \rightarrow LEP constraints on h_1 are less restrictive
- \rightarrow the search for h_1 at the LHC can become considerably more difficult

These are not "unavoidable" predictions of the NMSSM, but depend on the unknown parameters λ , κ , A_{λ} , A_{κ} , $\tan \beta$, μ_{eff}

What are the consequences of particular boundary conditions at a high scale (mSUGRA, GMSB)?

(The subsequent results are obtained with the help of the Fortran code NMHDECAY/ NMSSMTools (U. E., J. Gunion, C. Hugonie), which computes the Higgs/sparticle spectrum and Higgs BRs including radiative corrections for general/mSUGRA/GMSB boundary conditions, and checks for constraints from colliders/B-physics/(g-2)_{μ}/dark matter via MicrOMEGAs)

The cNMSSM (with A. Djouadi, A.M. Teixeira)

Universal soft SUSY breaking terms (including the singlet sector) at $M_{GUT} \sim M_{Planck}$

 \rightarrow Just 4 free parameters $M_{1/2}$, m_0 , A_0 , λ (κ determined by M_Z), as in the cMSSM (with λ replaced by μ or tan β)

Constraints from $\langle S \rangle \neq 0$:

At $M_{SUSY} \sim M_{weak}$: $V(S) \sim m_S^2 |S|^2 + \frac{\kappa}{3} A_\kappa (S^3 + S^{*3}) + \kappa^2 |S|^4$

has a stable nontrivial minimum if $m_S < \frac{1}{3}|A_{\kappa}|$ and $\kappa A_{\kappa} \langle S \rangle < 0$ (from stability in the CP-odd direction) m_S , A_{κ} are hardly renormalized between M_{GUT} and M_{SUSY} , $\kappa \langle S \rangle > 0$ if $\mu_{eff} > 0$

$$\rightarrow m_0 \lesssim \frac{1}{3} |A_0|, \ A_0 < 0$$

Constraints from dark matter:

The lighter stau $\tilde{\tau}_1$ would be the LSP unless the additional (singlet-like) neutralino $\tilde{\chi}_1$ (with a mass $\sim |A_{\kappa}| \sim |A_0|$) is lighter

$$\rightarrow |A_0| \lesssim \frac{1}{3} M_{1/2}, \rightarrow m_0 \lesssim \frac{1}{10} M_{1/2}$$

(impossible in the MSSM!)

From
$$\Omega h^2$$
: $m_{\tilde{\chi}_1} \sim m_{\tilde{\tau}_1} - (1 - 8) \text{ GeV} \lesssim 600 \text{ GeV}$
 $\longrightarrow A_0 \sim -\frac{1}{4}M_{1/2}, \ M_{1/2} \lesssim 2-3 \text{ TeV}$

Constraints from LEP:

 $m_{{ ilde au}_1} \gtrsim$ 100 GeV

→
$$M_{1/2} \gtrsim 400 \text{ GeV}$$

 \rightarrow the SM-like Higgs scalar H_{SM} has a mass $m_{H_{SM}} = 115 \dots 120$ GeV BUT: $m_{H_{SM}}$ decreases if H_{SM} mixes with the singlet-like scalar

$$\rightarrow \lambda \lesssim 2 \times 10^{-2}$$

- \rightarrow The complete spectrum is determined by $M_{1/2}$
- \rightarrow Consistent with constraints from colliders, B physics
- \rightarrow tan $\beta \sim 25 \ldots$ 38, $\mu_{eff} \sim 500 1100$ GeV, $M_{Squark} \sim M_{Gluino} \sim 2 M_{1/2}$

For $M_{1/2} \lesssim 640$ GeV, the lightest CP-even scalar h_1^0 is singlet-like

Apart from the different spectrum w.r.t. the MSSM, the $\tilde{\tau}_1$ track length (at the end of <u>each</u> sparticle decay cascade!) can be ≥ 1 mm, if $\lambda \leq 10^{-4}$ \rightarrow A possible smoking gun!

Constraints from $(g-2)_{\mu}$ (with F. Domingo):

NMSSM and GMSB

(with C.C. Jean-Louis, A.M. Teixeira)

GMSB: Messenger fields ϕ_i with a mass M_{mess} exist, their CP-even and CP-odd scalar masses² are split by m^2

Possible origins of the SUSY breaking m^2 :

- Dynamical SUSY Breaking (non-perturbative) in a hidden sector containing SUSY Yang-Mills + matter (Affleck, Dine, Seiberg, Nelson, Intriligator, Shih,...) + couplings of ϕ_i to the hidden sector
- O'Raifeartaigh models
- Giudice-Masiero terms for ϕ_i in the Kähler potential of No-Scale Supergravity (U.E., '95)

Messengers ϕ_i carry $SU(3) \times SU(2) \times U(1)_Y$ gauge quantum numbers

 \rightarrow Generation of gaugino (at 1 loop) and scalar (at 2 loops) masses of the order $M_{SUSY} \sim \frac{m^2}{16\pi^2 M_{mess}}$

BUT: no μ - or *B*-terms of the MSSM!

couple H_u , H_d directly to the SUSY breaking sector (?), or

 \rightarrow NMSSM + couplings $\sim \eta S \phi_i \phi_i$ of S to the messenger sector

Otherwise: m_S^2 , A_{κ} vanish at the scale $M_{mess} \rightarrow \langle S \rangle$ too small (See, however, Liu and Wagner: SU(5) violating messenger sector)

- \rightarrow integrating out the messengers generates m_S^2 , $A_\lambda = \frac{1}{3}A_\kappa$, ... + possibly terms linear in S in the superpotential $W \sim \xi_F S$ and in $V_{soft} \sim \xi_S S$, so-called "tadpoles".
- \rightarrow Tadpole terms always trigger $\langle S \rangle \neq 0$ but, if allowed, the parameters ξ_F , ξ_S tend to be somewhat large:

 $\begin{aligned} \xi_F &\sim \eta \, M_{mess} \, M_{SUSY}, \quad \xi_S &\sim 16\pi^2 \, \eta \, M_{mess} \, M_{SUSY}^2 \quad (M_{mess} > M_{SUSY}) \\ \text{Require} \quad \xi_S &\sim M_{SUSY}^3 \quad \rightarrow \text{need} \quad \eta &\sim \frac{M_{SUSY}}{16\pi^2 M_{mess}} \lesssim 10^{-5} \end{aligned}$

Then: phenomenologically viable, if $\lambda \gtrsim 0.5$, tan $\beta \lesssim 2$

→ the NMSSM specific contribution to the scalar Higgs mass matrix pushes the lightest Higgs mass above the LEP bound:

 $M_{mess} = 10^{6} \text{ GeV},$ $M_{SUSY} = 500 \text{ GeV},$ $\xi_F = 3 \cdot 10^{4} \text{ GeV}^{2},$ $0.5 < \lambda < 0.6$ $10^{-6} < \eta < 10^{-5}$

Bino, Winos, Sleptons: $\sim 110-290 \text{ GeV}$ Squarks, Gluino: $\sim 640-890 \text{ GeV}$ Additional Higgs states: $\gtrsim 600 \text{ GeV}$ Tadpole terms can also be forbidden by discrete symmetries, if the messenger sector is enlarged to ϕ_1 , $\overline{\phi}_1$, ϕ_2 , $\overline{\phi}_2$ (Giudice, Rattazzi):

$$W = \eta \ S\overline{\phi}_1\phi_2 + M_{mess}(\overline{\phi}_1\phi_1 + \overline{\phi}_2\phi_2) + \dots$$

As before, the soft terms m_s^2 (< 0), A_κ , A_λ are calculable in terms of η and M_{SUSY}

Delgado, Giudice, Slavich: viable regions in the parameter space M_{SUSY} , M_{mess} , η , λ , tan β

But: Heavy sparticle spectrum: bino, wino, sleptons \sim 450 - 1100 GeV, squarks, gluino \sim 1.8 - 2.4 TeV

If, in addition, A_{κ} , $A_{\lambda} \sim 0$:

All soft terms for the singlet vanish at M_{mess} except for m_S^2 (A corresponding hidden sector remains to be constructed)

- \rightarrow the scalar sector of the NMSSM has an R-symmetry (at M_{mess}), which is broken by radiative corrections to A_{κ} , A_{λ} induced by the gaugino mass terms
- \rightarrow at the weak scale: the explicit R-symmetry breaking by A_{λ} , $A_{\kappa} \sim$ a few GeV is small (if M_{mess} is not too large)
- \rightarrow the spontaneous R-symmetry breaking by $\langle H_u \rangle$, $\langle H_d \rangle$, $\langle S \rangle \neq 0$ generates a pseudo Goldstone Boson, a light CP-odd Higgs scalar a_1
- \rightarrow the lightest Higgs scalar h_1 decays via $h_1 \rightarrow a_1 a_1$, escaping LEP constraints if $m_{h_1} \gtrsim 90$ GeV (depending on m_{a_1})

Phenomenologically viable:

 $\lambda = 0.6$ 10⁷ GeV < $M_{mess} < 5.10^9$ GeV, 200 GeV < $M_{SUSY} <$ 280 GeV,

Bino, Winos, Sleptons: $\sim 100\text{-}200 \text{ GeV}$ Squarks, Gluino: $\sim 450\text{-}600 \text{ GeV}$ $m_{a_1} \sim 1 - 50 \text{ GeV} < m_{h_1}/2$ Additional Higgs states: > 500 GeV

Motivation for additional SM singlets like S?

Multiplets of larger GUT gauge groups (like E_6) contain SM singlets

- \rightarrow Typically: extra U(1)' gauge symmetries, under which H_u , H_d , quarks, leptons, S (or S_i) are charged ($\rightarrow \mu H_u H_d$ forbidden)
- \rightarrow no κS^3 -term in the superpotential, but a $g'^2|S|^4$ -D-term can stabilize the potential V(S)
- \rightarrow the additional $g'^2 |H_{u,d}|^4$ -D-terms lead to heavier Higgs scalars (\rightarrow LEP constraints easier to satisfy)
- BUT: The cancellation of all anomalies requires additional (exotic) matter, possibly more SM singlets
- \rightarrow Gauge coupling unification is no longer automatic (but possible)

Phenomenology (UNMSSM...): (Langacker et al., King et al.,...)

- extra Z' gauge boson (mixes with Z in general \rightarrow constraints)
- extra neutralinos from Z' and singlets, extra matter

Summary

Assuming that a single (SUSY breaking) scale M_{SUSY} generates the weak scale $\sim M_Z$, the NMSSM is the most natural supersymmetric extension of the Standard Model

cNMSSM (mSUGRA):

The phenomenologically viable range of $M_{1/2}$, m_0 and A_0 is very different from the cMSSM: close to a No-Scale scenario $m_0 \ll M_{1/2}$, $A_0 \sim \frac{1}{4}M_{1/2}$; the LSP is always singlino-like; a large NLSP (stau) life time can lead to observable tracks

GMSB:

The NMSSM allows to solve the μ -problem of GMSB models in a phenomenologically viable way, provided S couples to the messenger sector which induces soft SUSY breaking terms for S. Tadpole terms are not dangerous if the coupling η of S to the messengers is small. Different scenarios can be realized implying different phenomenologies in the Higgs and sparticle sectors. Possible are, amongst others,

- light CP-odd scalars (pseudo-Goldstone Bosons),
- light CP-even scalars with large singlet component.

Just another few years, then we will know ... hopefully